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Summary

Offshore wind energy has emerged as a viable supplement to onshore wind en-
ergy. Large scale offshore wind power plants will contribute significantly to the
share of renewable energy in the future energy mix.
The structural design of the offshore wind turbine faces new challenges from

the harsh offshore environment of the North Sea. One of the additional design
aspects that onshore wind turbines have not been confronted before is the hy-
drodynamic loading. The combined extreme wind and wave loading can be an
important issue for the structural design. It has been shown that an extreme
load condition does not necessarily lead to extreme response of the offshore wind
turbine. In this study, the emphasis will be on the extreme response of offshore
wind turbines.
The environmental contour of the site where the turbine is located is de-

termined using joint statistics of the mean wind speed, significant wave heights
and wave periods. The information on the environment is provided by hindcast
data. The joint probability density of wind and waves is used to specify extreme
load conditions.
The extreme response of the offshore wind turbine to the external load con-

ditions can be determined in the frequency domain and in the time domain.
Due to the non-linear response characteristics of the turbine, the time domain
approach is to be preferred. The simulation results are analysed with differ-
ent methods to obtain conditional distributions of the extreme response. These
methods use different information from the time series. The MAX approach uses
the maximum of each simulation, the POT approach uses the peaks, i.e. local
maxima, above a given threshold, and the Process model uses the statistical
moments of the time series to determine the extreme response distributions.
The number of stochastic variables has to be limited. The mean wind speed,

the significant wave height and the zero up-crossing period are chosen after
performing a sensitivity study of the turbine response to the variation of different
stochastic variables. The variation of the extreme response distribution to the
number of simulations and length of simulations is studied. The recommended
number of simulations is 50 and the recommended length of simulations is 40
minutes, for the MAX method. The uncertainties of the distribution models and
distribution parameters are taken into account with a Bayesian analysis. The use
of non-informative priors does not add significant variation to the estimates. The
Bayesian analysis provides a formal criterion for the choice of the distribution
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vi SUMMARY

model.
The POT and Process models can yield similar estimates of the extreme

response with respect to the MAX method with significantly fewer simulations.
To form the long-term distribution of the extreme response, one needs to take
into account all the conditional distributions from different sea states. It can
be shown, however, that in the presence of few dominating conditional distrib-
utions, it is not necessary to take all the sea states into account for long-term
estimates of the response, but only those that dominate the tails of the long-term
distribution.
The three methods mentioned above are response based, thus the extreme

responses with a certain return period are determined by the response distri-
bution. External condition based methods determine the return period of the
external conditions (50 year gust, 50 year extreme wave etc.) and assume that
the obtained response has an equivalent return period as the external condi-
tions. The two methodologies to obtain extreme responses are applied to two
example turbines, one with pitch control and the other one with stall control
The extreme external conditions are currently represented with determinis-

tic models of extreme wind and waves. Stochastic models can be constructed
with constrained simulations. In this case, constrained simulations are used
to construct extreme wind gust and extreme waves with stochastic properties.
The response from constrained gusts and waves are compared to the response
obtained with deterministic models. For the pitch regulated turbine analyzed
here, the constrained gust does not present a real threat to the turbine, since
the controller is able to filter the constrained gust loads. For the stall regulated
turbine, the constrained gust and the deterministic gust gave similar estimates
of the responses.
The extreme wind gust and extreme wave do not necessarily occur at the

same time. A time lag is introduced between the two maxima. The time lag
is applied for both deterministic models and constrained gusts and waves. The
calculated responses from deterministic models decrease sharply for increasing
time lag, while the decrease for constrained models is more gradual. The time
lag can have significant influence on the response of the support structure, while
it has no effect on the blade response.
The external condition based method does not give an accurate estimate

of the extreme response, since the extreme response is not correlated with ex-
treme environmental conditions. For the stall regulated turbine, the external
condition based estimates are consistently higher than the response based es-
timates. Currently, the design codes prescribe extreme external conditions for
the determination of the extreme response. Moreover, the extreme mean wind
speed prescribed by the design codes is considerably higher than the extreme
mean wind speed obtained by a statistical analysis of the hindcast data. The
correlation between extreme response and extreme load conditions is evident
for the stall controlled turbine but not for the pitch controlled turbine. The
extreme response distribution can be used to determine the failure probability
of the structure, forming the basis of a risk based design approach.
The load situations considered here exclude special load cases that can arise
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during installation, failure of a subcomponent, e.g. the blade pitch mechanism,
non-stationary events etc. It is assumed that the turbine is functioning in the
normal operation modes. The results obtained are strictly speaking only valid
for the chosen turbine configuration and the chosen location, since they deter-
mine the response characteristics as well as the external load conditions. The
methodology, however, can be applied for different types of offshore wind tur-
bines at different sites.
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Chapter 1

Introduction

1.1 General

Wind energy is going through a period of steady growth The research pro-
grams that have been carried out have contributed to the maturing of wind
energy technology. The growth is partly induced by positive political signals
and financial incentives. There is a clear change in the energy policy toward a
higher participation of renewable energy in the overall energy production. Given
these favourable conditions wind energy will be able to sustain the growth in
the coming years.
In Europe, wind resources on land are becoming more scarce. Specially

for large scale wind energy production, suitable locations are more difficult to
find. This is specially true for densely populated areas. There is also an audible
resistance from some parts of the population and special interest groups who see
in the advancement of wind energy a threat to the living environment, hence a
deterioration of life quality. The reason can vary from preservation of landscape,
protection of the fauna possibly affected by the realisation of large scale wind
power projects, to purely esthetical questions. In search of further expansion
possibilities of wind energy, offshore locations can be a viable alternative or
complement to onshore locations.
There are several reasons to choose offshore locations instead of onshore

locations. Firstly, the wind speed is higher and the turbulence intensity is
lower because the roughness of the water surface is considerably less than the
roughness on a typical land surface. The visual impact is generally not a relevant
issue because there will be a minimum distance at which the wind park is
situated. The problem of acoustic emission is insignificant given the distance to
the populated area. On the other hand there are extra costs involved with the
realisation of offshore wind energy. The need of a support structure increases
the material costs. Installation and maintenance are more costly due to the
transportation and limited access possibilities. Furthermore, the need of an
offshore electrical transmission also counterbalances the advantage of higher

1



2 CHAPTER 1. INTRODUCTION

energy yield.
To reduce the cost it is necessary to achieve an efficient structural design.

In the current design codes for wind turbines, it is required to perform both
fatigue and extreme load analysis to ensure that the structure will withstand
both types of loads. Ideally, the strength of the structure should match exactly
the demand placed by the fatigue and extreme loads. However, there are several
uncertainties concerning the external loads, structural response and structural
strength. For this reason, the design loads are codified in standards to ensure a
consistent treatment of the loads during the design stage.

1.2 Current design practice

The current design practice for onshore and offshore wind turbines concerning
the design loads are described briefly in the following paragraphs.
Onshore
The onshore design methodology for wind turbines checks fatigue and ex-

treme loads. For fatigue calculations, stochastic wind fields are generated as
input to determine the structural response for a given wind condition Subse-
quently, the stress amplitudes are counted using, for example, a rainflow algo-
rithm. The frequencies of occurrence of different wind conditions are multiplied
with the stress amplitude distribution and the fatigue damage is calculated us-
ing the linear damage accumulation law. There are several design codes that
describe the procedure to determine the fatigue damage. The IEC [53] and
Germanischer Lloyd [44] standards are widely accepted for design calculations
of wind turbines, also DNV/RISØ [34] offers guidelines for design calculations
of wind turbines.
The extreme load conditions comprise a wide range of situations where ex-

treme loads can occur. There are load cases that are caused by extreme wind
conditions such as the extreme wind gust, extreme wind shear, wind directional
change etc. The extreme wind gust during operation is modelled with deter-
ministic functions, which do not reflect the random characteristic of the wind
turbulence. The main purpose of the deterministic extreme gust is to determine
the response of the turbine to a gust with a short rise time.
Offshore
The experience in design of offshore wind turbines and support structures is

quite limited. Guideline for design load calculations is still in development.
The only guideline specifically written for offshore wind energy is from the
Germanischer Lloyd [43]. The approach from the Germanischer Lloyd guideline
is described briefly below.
The GL procedure to calculate the fatigue loads is comparable to the proce-

dure used in onshore design. The wave parameters, the significant wave height
and the corresponding characteristic wave period, are directly correlated to the
wind speeds. This empirical relation of wind and wave parameters is actually a
valid approximation only for fully developed sea states. The fatigue loads are
partially reduced by the lower turbulence intensity of offshore wind, but on the
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other hand the wave excitation adds also a contribution to the fatigue damage.
The wind shear, which describes the vertical profile of the mean wind speed,
is reduced due to the lower surface roughness, decreasing also the wind shear
excitation.
The GL extreme load cases for an offshore wind turbine are comparable

to the onshore version. A reduced wave loading is added to almost all of the
extreme load cases in the onshore design code. Furthermore, there are two
combined extreme load cases of wind and wave. The first one is the combination
of 1 minute gust associated with the 50 year mean wind speed and an extreme
wave height with a probability of 0.001 for a given significant wave height (e.g.
50 year significant wave height). The second load case considers the 3 second
gust associated with the 50 year mean wind speed and a reduced wave height
chosen such that it has the same joint cumulative probability as the first load
case.
In general, fatigue is the design driver for the rotor blade, because of the

material properties of the load carrying material: glass fibres. It has a high ulti-
mate tensile strength but the fatigue strength is lower than the fatigue strength
of steel. The slope of the S-N curve is steeper, in comparison to materials like
steel. Assuming the same load history, this would result in a higher damage
for the composite material (based on the linear damage hypothesis). For fixed
offshore structures designed for fossil energy extractions the extreme loading is
usually the design driver. This lies in the fact that fixed offshore structures
generally have a natural frequency much higher than the peak frequency of the
wave load. Furthermore, the wind load plays a less significant role. Hence, the
response is dominated by the quasi-static part [88].

1.3 Motivation

For offshore wind turbines (OWT), the extreme response can be a more relevant
issue than for onshore wind turbines. The question raised here is how to deter-
mine the extreme response of the structure in a rational way. This is necessary
to ensure that the structure can withstand extreme loads that can occur during
the service life without incurring excessive conservatism in the structural design.
There are several problems related to the above described GL approach to

determine extreme responses. First, the deterministic models of extreme wind
gust and extreme wave height do not reflect the stochastic nature of the wind
and waves. Secondly, the extreme load cases prescribed by Germanischer Lloyd
determine the return periods of mean wind speed and significant wave height
separately. Thirdly, it is assumed that the response determined in this way
corresponds to the return period of the specified external condition. This is in
general not valid for dynamic responding structures1 where the correspondence
between the return period of the external condition and the return period of the
response does not apply due to the action of the frequency response function.

1For statically responding structures this correspondence applies if there is a monotonic
relation between the external conditions and the response.
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Reliability based design methods are applied to the design of all sorts of
offshore structures [70] [36], also in the form of guidelines [33]. The method can
also be applied to the design of an Offshore Wind Turbine, OWT2 [92]. One
has to be aware of the differences between conventional offshore structures and
an OWT. One significant difference between fixed offshore structures and an
OWT, is that the wind turbine has active influences on the load itself. The dif-
ferent operation states (full load, partial load, stand still etc.) of the OWT give
rise to different load characteristics. During the energy extraction, the rotat-
ing blades reduce the vibration of the support structure through aerodynamic
damping. Furthermore, the controller of the system can affect the external loads
substantially by actively yawing the nacelle or by pitching the blades, etc.
There are several probabilistic approaches that consider aerodynamic loads

and/or hydrodynamic loads for offshore structures. These approaches can be
applied to determine the extreme responses of an OWT. For onshore wind tur-
bines there are methods to determine the failure due to fatigue [59][90], and
extreme response [73] of the wind turbine using a probabilistic approach. These
methods concentrate on the statistical modelling of the measurement data, e.g.
extreme flap moment. The advantage of such approaches is that they do include
all the extreme responses irrespective of their origin. On the other hand, if the
length of measurements is not long enough and do not cover all the wind con-
ditions, the extrapolation from these limited data can incorporate uncertainties
to the estimates.
A possible way to get around the limitation of measurements is to obtain the

response by simulations. The extreme response can be simulated for a variety
of extreme conditions. These extreme conditions are taken from measurement
or hindcast data, which usually cover a longer period than the available re-
sponse measurements. The responses obtained using simulations are analysed
statistically and the long-term response distribution can be obtained by extrap-
olation. This methodology has been applied to the support structure of an
OWT in the Opti-OWECS project [58], where the influence of the turbine is
taken into account in a simplified way. In this thesis the operating conditions of
the wind turbine is considered and different statistical approaches to determine
the extreme response are applied.
Another issue addressed in this thesis is the application of stochastic models

of extreme wind gusts and extreme waves. The current extreme gust model
consists of deterministic functions. The deterministic gust is not based on a
physical model but on a number of measurements. The extreme wave model
is in general a Stokes wave of higher order (e.g. 5th) [18] or Stream functions
[31]. These models produce non-linear waves but these non-linear waves do not
contain the random properties of the ocean waves. On the other hand, the
stochastic models of extreme wind gust and wave are based on the physical
properties of large waves and wind gusts. They can be used to evaluate the
response of the OWT to extreme wind gust and extreme waves. The method
used here to produce stochastic waves and wind gusts is based on the constrained

2 In this document, the terminologies from the mentioned reference are used.
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simulation. It is an efficient method to produce an extreme wave or an extreme
wind gust with stochastic properties without the need of long simulations. The
constrained simulation will be discussed in detail in Chapter 12.

1.4 Approach

1.4.1 Response based approach

The pursued approaches can be divided in two parts. A response based approach
and an external condition based approach. Figure 1.1 shows schematically the
response approach applied here to achieve a rational structural design against
the extreme response. The major steps are described briefly below.

• Offshore environment: specification of the external conditions. The dis-
tributions of wind and waves are derived from measurements or hindcast
data. In general, the short-term conditions of wind and waves are spec-
ified by variance spectra with input parameters (e.g. mean wind speed,
significant wave height, zero upcrossing period, etc.) that characterise
the stochastic process. Long-term wind and wave climates are usually
described in distributions of the parameters that characterise the process,
for example the mean wind speed, the turbulence intensity, the significant
wave height, the zero upcrossing period etc.

• Load response model: generation of stochastic wind and waves from the
wind and waves spectra and translation of the wind speed and wave kine-
matics into aerodynamic and hydrodynamic loads. This can be done in
both frequency and time domain. This determines the choice of response
model as well. Considering the non-linear response characteristics, the
time domain approach is chosen.

• Structural response: translation of the external loads, i.e. aerodynamic
and hydrodynamic loads, into structural responses, such as displacements,
stresses etc.

• Response statistics: statistical analysis of the response, using the max-
imum values, the peak over threshold values or the statistical moments
of the response time series. For frequency domain analysis, the statis-
tical parameters are extracted from the response spectrum. This step
produces conditional statistics: the obtained distributions are conditioned
on a given set of sea state parameters. Combining the conditional dis-
tributions and the occurrence frequency of the sea state, the response
distribution for a random sea state can be obtained.

• Extrapolation of the distribution: Extrapolation of the extreme response
distribution for a random sea state to the distribution of the yearly ex-
tremes. From this distribution the structural response corresponding to
different return periods can be determined. This step of extrapolation is
necessary because of the limited data.
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• Failure probability can be determined once the failure criterion is estab-
lished. The material properties are modelled as constants here, this is
acceptable in view of the relatively large uncertainties associated with the
response. Whether or not to include the material strength as a stochastic
factor depends on the nature of the problem. If the failure probability de-
pends on the local strength, it may be preferrable to take the strength as
stochastic variable. In this case, the strength is characterised by a global
strength variable which is regarded to have narrower variation than the
variation of the response. For further discussion refer to [62].

1.4.2 External condition based approach

The second approach used here to determine extreme responses is based on the
external condition. The external condition that corresponds to a return period
of, for example 50 years, is determined. The extreme response that corresponds
to this external condition is calculated using time domain simulations. It is
assumed that the calculated response has the same return period as the return
period of the external condition.
The purpose of the external condition based approach is to apply stochastic

models of extreme wind gust and waves to determine the response variation
due to the randomness of these extreme load models. These stochastic models
of extreme wind and wave loads can be an alternative to the currently used
deterministic models. Different combinations criteria of the stochastic wave and
wind gust are also studied. An example of a stochastic gust and deterministic
gust is shown in Figure 1.2
The responses from stochastic models are compared to the responses from

deterministic models. The level of risk can be established from the distribution
of the extreme responses. Even though the stochastic models have theoretical
basis, the use of these models for design calculations needs to be validated with
extensive measurements of responses. A preliminary verification of extreme gust
responses can be found in [8].

1.5 Structure of the thesis.

Following the introduction, Chapter 2 describes the previous research results
relevant to the work presented here, followed by the scopes and limitations of
the subjects. Chapter 3 describes the offshore environment, the sea states, ex-
treme wind and wave events and the fitting of joint distributions of wind and
waves. The extreme load conditions from design codes are specified. Chapter
4 describes the OWT concepts and the turbines used in this study. Chapter 5
gives a brief account of the load and response modelling of an OWT. Chapter
6 deals with the reduction of the stochastic variables that govern the external
conditions, eliminating those which have less influence on the response.The sta-
tistical analysis of extremes is described briefly in Chapter 7, together with the
fitting methods and the statistical tests. Study of the length and number of
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Figure 1.2: A random realisation of a stochastic gust (solid) together with the
deterministic gust (dash-dot)

simulations necessary for a reliable estimate of the response distribution can be
found in Chapter 8. The uncertainties of the distribution choice and distribu-
tion parameters, are analysed with Bayesian analysis. This analysis is carried
out for the MAX model, where only the maximum response of each simulation
run is used.
Instead of using only the maximum of each simulation run the peak values

over a certain threshold (POT) are also suitable for the analysis of extreme
responses. In Chapter 9, different POT models are fitted to the sample peak
distribution. The uncertainties concerning the peak counting and the level of the
threshold are investigated. Extrapolation of the peak response distribution is
performed to determine the extreme response of different return periods. Apart
from the maximum and peak values, one can also use the statistical moments
of the simulated time series to predict extreme responses. This random process
model is described in Chapter 10. First a Gaussian model is used and then
a weakly non-Gaussian model, which is based on a correction of the Gaussian
process where the correction is applied to obtain the non-Gaussian skewness
and kurtosis of the extreme response distribution. The long-term distributions
of the extreme responses are determined in Chapter 11.
Chapter 12 concerns constrained simulations. The constrained gust and wave

models are described. The influence of the different gust models on the response
is studied, including variations of the gust centre. The number of constrained
simulations necessary to obtain a reliable distribution of the gust responses is
studied. The combination of constrained waves and wind gusts is treated in
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the same chapter using both deterministic and stochastic models. Different
combination criteria are applied. Chapter 13 is dedicated to the comparison
and application of the methods described above and finally conclusions and
recommendations for further research are given in Chapter 14.
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Chapter 2

Scope and Limitations

2.1 Current status of the research topic

There are not many references in the area of structural reliability applied directly
to offshore wind turbines. One of the first studies on offshore wind turbines
using random wind and waves can be found in [71], where a simple turbine
with a support structure model has been developed. In the ”Study of Offshore
Wind Energy in the EU” [66], the combination of wind and wave load cases are
determined based on statistical criteria. It contains numerous extreme load cases
closely related to the cases specified in the design code of GL offshore. However,
in the design code a deterministic method is applied to obtain the extreme
response of the OWT using, for example, Stream functions and steady wind.
In another study entitled ’Structural and Economic Optimisation of Bottom-
Mounted Offshore Wind Energy Converters, Opti-OWECS, [58], a probabilistic
method has been applied to the support structure using state of the art programs
for the design of offshore structures.
Conditional distributions of the response of the support structure during a

storm are determined. The long-term distributions of the responses are obtained
from a convolution and extrapolation procedure. The storm-based approach has
the advantage that the storms can be considered as independent events [58]. For
the Opti-OWECS study, the wind loads are simplified as a tower top force.
Kühn [57] has analysed different extreme load cases for an OWT using deter-

ministic models. Measurements of OWT response are scarce and in many cases
wind speeds and wave heights are not measured simultaneously. Measurements
of extreme responses of a modern onshore wind turbine with a pitch control [60]
have shown that the extreme flap moment during a very severe storm is still
lower than the flap moment around rated mean wind speed. For the support
structure of an OWT, however, this may not necessarily be the case. But it
does show that the contribution of the aerodynamic forces during operations
to the blade response is considerably higher than during stand still, for a pitch
regulated wind turbine.

11
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Madsen et al [65] have carried out calculations of extreme response of the
blade and the yaw bearing moments. Statistical analysis is applied to the sim-
ulation results. An experimental onshore wind turbine model is used for the
calculation. A semi-analytical approach based on the Davenport [30] and the
Hermite model, proposed by Winterstein [99], [101], has been applied. The
results from the simulations show a good agreement between the conventional
approach, which uses an extreme value distribution to fit the extreme values of
the simulations, with the semi-analytical approach. Fitzwater & Winterstein
[39] also applied the quadratic Weibull model to fit extreme flap moments from
measurements data. If the data follow a Weibull distribution then the data
will appear as a straight line when plotted in the Weibull scale. The quadratic
model is more flexible than the Weibull distribution because it can follow the
curvature of the data if the data is not strictly Weibull distributed.
A Process method based on Volterra series is also applied to determine the

maximum response of the blade. In many cases the distribution of the maxima
shows little scatter so that the mean value of the distribution can be used as
a good approximation [30]. A similar study based on the Hermite model and
applied to the ultimate load of the rotor blade can be found in [76].
There are numerous publications regarding the probabilistic treatment of

fatigue loads and fatigue damages, [59],[90] and [14], all of them concerning
onshore wind turbines. The basic idea is to find the load amplitude distributions
for a given combination of mean wind speed and turbulence intensity. The
fatigue strength of the material is usually represented by the S-N curve. The
parameters of the S-N curve are modelled as stochastic variables. Knowing the
distribution of the stress that depends on the the external condition (i.e. mean
wind speed and turbulence intensity), the distribution of the external condition
and the distribution of the strength parameters, one can proceed to calculate
the fatigue failure, given a failure criterion.
The other topic of this thesis is the modelling of extreme wind gusts and

waves using contrained simulations. The constrained simulation of waves is
based on the concept of New Wave [87], which gives the expected profile of an
extreme wave. By superposing the New Wave to a stochastic wave [49], one can
create extreme waves with stochastic properties without long simulations. The
variability of the response due to wave forces has been studied with constrained
simulations [48]. The constrained simulation of wind was applied to onshore
wind turbines in [9]. A modified expression of New Wave exists [42], which
includes an extra parameter of an instantaneous frequency instead of the mean
frequency assumed in the derivation of New Wave.

2.2 Scope and limitations

The past works mentioned in the previous section have been objects of separate
research with very different application areas. Hence, the object of this thesis is
to formulate a general methodology to apply the probabilistic design approach
to an offshore wind turbine.
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The subjects of offshore climates, aerodynamics, hydrodynamics, structural
dynamics, structural reliability etc. cover very broad areas of research. Given
this large number of subjects treated here, one needs to define a boundary
around the relevant objectives and specify the limitations.
The main purpose of the thesis is to develop a risk-based design methodology

for an OWT, where the emphasis is placed on the extreme response. The method
is then applied to an OWTmodel to determine the extreme responses using time
domain simulations. The method should be general enough so that it can be
applied to different kinds of OWT configurations, that is, different wind turbine
concepts or different support structure concepts etc. At the same time, it should
address the specific issues of an OWT, such as the combination of wind and wave
loads.
The response treated here refers to two global response variables of the

structure. One is the flap moment at the blade root and the other one is
the overturning moment of the support structure. However, the methodology
can be applied to displacements, stresses, strains, forces etc., depending on the
application purpose.
External condition: The external condition is taken from the NESS/NEXT

hindcast database [72] for a location in the North Sea close to the Dutch coast.
The same location was used in the Opti-OWECS study. This database contains
the partial correlation of the mean wind speed with wave parameters (This cor-
relation is in fact inherent to the hindcast model itself, however, verifications
with measurements have shown good agreement with the measured data). The
external conditions given here can be described by stationary parameters such
as the mean wind speed and the significant wave height etc. Short and non-
stationary events (e.g. extreme wind shear simultaneously with extreme change
of wind direction) can induce extreme responses as well, but these events are
not retrievable from hindcast database. Since these events do not occur very
frequently, there is not enough data available for a statistical description of
such events at the moment. For this reason, these non-stationary events are not
considered.
The scatter diagram is built from the hindcast database. A scatter diagram

is a discrete representation of the probability density of the sea state parameters.
In the offshore terminology, sea state is characterised by two parameters, the
significant wave height and the corresponding characteristic wave period. In
this thesis, the word ”sea state” is used in a broader sense, to include other
parameters that describe the offshore environment, in particular, the mean wind
speed.
The minimum number of sea state parameters that needs to be considered is

investigated. This reduction of parameters is necessary since the computational
effort increases exponentially with the number of stochastic parameters. The
stochastic wind field is generated with SWING3 [5], only the horizontal com-
ponents of the wind speed is considered. The wave is generated with a random
phase model. The spatial variation of the wave field is not considered, that is,
the cross correlation of the water elevation between two points is not taken into
account. The stochastic wave is generated using linear wave theory, while the
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deterministic extreme wave is modelled with Stream functions.
Load models: The aerodynamic loads and hydrodynamic loads are calcu-

lated using load models implemented in the simulation code DUWECS [102].
The core of the aerodynamic load model is the blade element momentum theory,
with correction factors for 3D effects, turbulent wake states, dynamic inflow etc.
Comparisons of DUWECS features and other state of the art simulation codes
can be found in [57],[68]. The hydrodynamic loads are based on the Morison
equation [78]. To calculate the hydrodynamic loads, it is necessary to determine
the kinematics of the particles. The kinematics of the water particles depends
on the wave theory. For random waves, the linear wave theory (Airy) is used,
while for extreme deterministic waves Stream functions are used.
Response models: The response is obtained with the time domain simu-

lation code DUWECS . It is capable of performing non-linear simulations. The
OWT is comprised of different sub-models that are interconnected. The rotor
is modelled as a rigid blade with hinge flexibilities in the flap and lead-lag di-
rection. The support structure is a finite element model. The physical degrees
of freedom are replaced by the modal degrees of freedom. To improve the cal-
culation of the quasi-static part of the response, higher modes are added to the
simulation as static modes.
The response of the wind turbine is also influenced by the generator and

the gearbox. Therefore, a generator and a gearbox are also included in the
simulation code.The modelling of the controller is a crucial part because of
the influence it exerts on the loads. For this study, two generic wind turbines
and one support structure concept are used. The wind turbine concepts are a
stall controlled wind turbine and a pitch controlled wind turbine. The support
structure concept for both turbines is the monopile.
Operational conditions: The operational condition of the wind turbine

affects the response significantly. The wind turbine is assumed to operate un-
der normal conditions, that is, without failure in any of the components that
can affect the response characteristics. Abnormal load conditions are classified
as special load cases. They include for example, operation with failure of the
controller, yaw mechanism, pitch mechanism etc. Evidently, these operation
conditions can induce extreme responses as well. However, the chance of oc-
currence of these events is largely unknown and as a consequence they are not
included in the probabilistic methodology proposed here.
In the near future the design of wind turbines with respect to extreme re-

sponses still needs to be checked against these special load cases. If the prob-
abilities of these rare extreme events can be determined with more certitudes,
it can be easily incorporated into the probabilistic method. Another class of
special load cases not considered here are the loads during the transport and
erection phase.
Statistical analysis: The response time series are analysed with statistical

methods using different amounts and kinds of information. This information
can be the maximum of each simulation run, the peak values over a certain
threshold or the statistical moments of the complete time series. The selected
response are fitted to different parametrical distributions. The goodness of fit
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is verified with different statistical tests.
The distributions are conditioned on the environmental parameters. Mul-

tiplying the probabilities of the environmental parameters with the respective
distribution and sum over the considered ranges of the environmental parame-
ters gives the response distribution for a random environmental condition. The
extrapolation of the distribution for a random external condition to a yearly
distribution of extreme responses depends on the number of occurrences of the
external conditions which can be considered as independent. Thus, this number
is an uncertain parameter. However, one study [100] shows that even for highly
correlated adjacent periods, it has little effect on the upper tail of the extreme
value distribution.
The uncertainties concerning the choice of distributions can be treated with a

Bayesian analysis, whose result indicates the percentage of participation for the
different distribution functions. The uncertainties of the distribution parameters
can be treated analogously. Although the treatment of the uncertainties with
Bayesian is not completely objective, it offers a formal and useful procedure to
take these uncertainties into account.
Combined extremes: The combination of extreme wind and waves is an

important aspect of the OWT design. Using the response approach this is auto-
matically taken into account by the scatter diagram. For the external condition
based approach, this combination need to be specified. Currently, the combi-
nation of wind and waves are not precisely specified in the design standards.
the most conservative assumption is that the maximum of the wind and wave
occurs at the same time. In addition, the constrained simulations of wind gusts
and waves are applied to determine the variability of the extreme response of an
OWT. Different combination possibilities are studied including time delays be-
tween the maximum of the wind speed and the wave.height. The study of time
delay has been accomplished for deterministic models and stochastic models of
extreme gust and extreme waves.
Structural reliability: The failure probability of the structure will be

calculated based on a fixed strength of the material. In reality the strength of
the structure is also stochastic, due to the variation of geometrical properties,
ultimate stress etc. The use of a fixed strength model is justified by the fact that
the load and response of the structure has much larger variation, hence a much
broader distribution. Furthermore, the material strength is represented by a
global strength parameter, hence the local variations of the material strength
are smoothed out.
One important thing to keep in mind is that the response characteristic is

specific to the OWT configuration while the external conditions are site specific
For this reason one needs to exercise caution when attempting to generalise the
results to different OWT configurations or locations.

2.2.1 Prospects

To conclude this chapter, one can say that the probabilistic method is an useful
tool to gain insight into the variability of extreme responses. The response
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based methods determine the long-term extreme response from the distribution
of responses and not from the distribution of external conditions.
However, the large amount of simulations required by the response based

method is the major obstacle for a widespread use of it. The constrained sim-
ulation procedure represents an alternative model to the deterministic models.
The constrained simulations consider the stochastic property of the wind tur-
bulence and waves in a shorter simulation length.
Theoretically, the estimated response distribution can be used for structural

reliability analysis leading to a more efficient structural design of the OWT.
But for the structural optimisation of an offshore wind turbine, it means a
large number of iterations to calculate the response distribution. Every time a
structural parameter is changed, all the responses need to be recalculated using
the time domain simulations. Hence, for the moment this method can not be
used for optimisation. However, this method can be used to calibrate the safety
factors for the extreme loads, contributing to a more rational design process.



Chapter 3

Offshore environment

3.1 General description

In this chapter the statistical characterisation of the wind and wave climates
for offshore locations are described. The focus is on the extreme wind and wave
conditions. Different statistical characterisations are used for different time
scales. Short-term refers to a time scale associated with the stationary period,
while long-term refers to time scale larger than the stationary period, e.g. one
month, one year etc.
The occurrence probability of the sea states1 is determined from the hindcast

data. The hindcast data are extracted from the NESS/NEXT (North European
Storm Study) database [72]. The database contains numerous parameters that
characterise the metocean conditions, from which three are used here, the mean
wind speed, the significant wave height and the zero up-crossing wave period.
The database covers a large part of the North Sea with a 30 km by 30 km grid.
The chosen location is in the North Sea, about 20 km off the Dutch coast, the
same location as used in the Opti-Owecs study.
Furthermore, the hindcast data can be used to determine design wind and

waves conditions, to determine energy yields and establish weather windows for
maintenance [7]. An analytical approach to determine the joint distribution of
wind and wave parameters is also applied to the metocean data, to be more pre-
cise, the mean wind speed, the significant wave height and the zero upcrossing
wave period. This approach enables the extrapolation of the sea state parame-
ters to return periods that are longer than the length of the data. The joint
probability density can be used to determine, for example, the environmental
contour of the 100 year sea state.
In this chapter, it is simply stated that the data will be fitted to a cumulative

probabilty distribution. The fitting method used is the least squares method.

1As mentioned in the Scope and Limitations, the term sea state is used here in a broader
sense than in the offshore engineering, to include the mean wind speed as a characteristic
variable.
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The details of different fitting procedures will be discussed in Chapter 8. The
extreme offshore environment which are determined in this chapter does not
necessarily produce the largest response of an OWT.

3.2 Wind climate

3.2.1 Short-term description of wind

With the term wind, one usually refers to the wind speed. The short-term
distribution of the wind speed refers to periods associated with the stationary
period of the wind. The stationary period of the wind varies from 10 minutes
to 1 hour. The wind speed is then divided into a constant term, the mean wind
speed, and a fluctuating term, the turbulence. A measure to characterise the
turbulence is the turbulence intensity It

It = σ/Ū (3.1)

where σ is the standard deviation of the process and Ū is the mean wind speed.
The turbulence is generally assumed to be a Gaussian process, although

the actual turbulence can deviate considerably from the Gaussian assumption
depending on the terrain conditions and stability conditions [51]. For offshore
wind climate the GL Offshore guideline defines a 12% turbulence intensity for
all the mean wind speeds. In an offshore wind park the turbulence intensity
is higher due to the park effect. The park effect refers to the increase of the
turbulence intensity due to the fact that many wind turbines will operate in the
wakes of the other wind turbines. To account for the park effect of the turbulence
intensity in a park, the Danish offshore guideline has specified a turbulence
intensity of 19.2%, if the distance between the turbines is more than five times
the diameter of the rotor [29]. It has to be noticed that the turbulence intensity
usually decreases with the wind speed and is in fact a stochastic variable.
The turbulence is described by a variance spectrum. The spectrum used here

is the von Karman spectrum. From the variance spectrum, a stochastic wind
series at one location can be generated using a random phase model. For the load
calculation this is not sufficient since it does not take the spatial variation into
account. This is described by the cross spectrum. In general, the cross spectrum
is complex, containing an in-phase and an out-of-phase component. In this case,
only the in-phase part is taken into account, the so-called co-spectrum. This
can be expressed in terms of the variance spectrum and the coherence function.
One of the commonly used coherence functions is the exponential coherence.
Other coherence models with non-elementary functions can be found in [37].
Using the random phase simulation technique developed by Shinozuka [81]

a (Gaussian) stochastic wind field can be obtained using the variance spectrum
and the cross spectrum. In this thesis, the wind simulations are produced with
the program SWING 3 [5]. In contrast with other wind simulation programs, it
generates times series of wind speed attached to the blade. Thus, the generated
signals are wind speeds as seen by a rotating blade. This input spectrum of the
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turbulence has a rotational sampling effect, with peaks in the frequencies which
are multiples of the rotation frequency. The advantage is that only points ’seen’
by the blades are generated, reducing the simulation effort and data to a mini-
mum. A disadvantage with this approach is that to transform the irrotational
spectrum to a rotational spectrum, the rotation speed of the blade has to be
known in advance. Thus, it can not be used for variable speed wind turbines.
This problem is solved by using azimuthal decomposition in the newer version
of the simulation program SWING 4 [6].
The variation of the mean wind speed with the height is described by the

wind shear or vertical wind profile. The theoretical description of the wind
profile is based on the shear stress within the boundary layer. The shear stress
reaches the maximum at the surface and approaches zero in the free atmosphere.
The wind shear can be described by the Prandtl logarithmic law as

Ū(z) =
u∗
k
ln

µ
z

z0

¶
(3.2)

where Ū(z) is the mean wind speed at height z, u∗ is the friction velocity which
can be written as u∗ =

U(zref )
2.5 ln(zref/z0)

, k is the von Karman constant, which
is approximately equal to 0.4 and z0 is the roughness length determined by
the condition of the surface. The friction velocity u∗ changes with the surface
roughness and the mean wind speed. For practical reasons, Equation 3.2 is
written in terms of a reference mean wind speed Ū(zref ) at a reference height
zref

Ū(z) = Ū(zref ) · ln (z/z0)

ln (zref/z0)
(3.3)

Given a reference mean wind speed Ū(zref ) at a reference height zref , one
can determine the mean wind speed profile if the roughness length z0 is also
given. For the open sea the roughness length depends on the wave surface el-
evation, thus it depends indirectly also on the mean wind speed. The most
common relation used to model the roughness dependency is the Charnock re-
lation, which relates the friction velocity and the roughness length to a constant,
the Charnock constant [66]. Solving the Equation 3.3 and the Charnock relation
iteratively one can obtain the wind speed profile over the height. An accepted
mean value of the roughness length for the open sea condition is 0.0002 m
[93], the Joint Committee on Structural Safety (JCSS) code [54] recommends a
roughness length of 0.003 m for the open sea. The usual range of variation2 is
between 0.0001 m and 0.0005 m. The fact is that the roughness length can not
be determined directly and there is a large discrepancy in the calculation of the
roughness length. However, within the given variation of the roughness length,

2The real roughness length varies with the sea state parameters. The values given here are
characteristic values which are calculated with different methods, therefore the large spreading
of the values. However, the large variation of the roughness length does not affect the mean
wind speed profile significantly.
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the mean wind speed profile does not vay significantly. In the JCSS code an
extension of the logarithmic law is given for height > 200 m.
In most of the design codes of wind turbines, an empirical model is used.

It is based on a power law. It is important to note that the power law has no
physical foundations, however, it often describes the vertical variation of the
mean wind speed accurately for engineering applications. The power law of the
wind speed profile is written as

Ū(z) = Ū(zref ) ·
µ
z

zref

¶α
(3.4)

where α is an exponent determined by measurements. The GL offshore guideline
prescribes a value of 0.11, independent of the external conditions. It is possible
to relate the power law exponent to the roughness length using an exponential
model for the range of z0 of interest [41]

z0 = 15.25 m · exp(−1/α) (3.5)

3.2.2 Long-term description of wind

The long-term distribution refers here to the distribution of the mean wind
speed. The Weibull distribution is widely used to model the distribution of
the mean wind speed, with an averaging period of 10 minutes to 1 hour. The
mean wind speeds can be taken from the hindcast database. In some cases, the
wind speeds of interest are wind speeds of rare occurrence, the extreme wind
speed. The extreme wind speed has a different distribution than the Weibull
distribution. Assuming that the Weibull distribution is the parent distribution
then the extreme mean wind speed follows the extreme value distribution type
I (EV I or Gumbel distribution).
The EV I distribution is asymptotically exact given a parent distribution of

an Exponential distribution. The estimate of extreme wind speeds with long
return period, say 50-100 years, depends on the number of independent periods.
Assuming that all the hourly mean wind speeds are independent, that is, there
is no correlation between the mean wind speeds, the number of independent
periods is 8766, which is the number of hours in one year.
However, it has been shown that using the number of hours in one year

as the number of independent periods leads to an overestimate of the extreme
wind speed. It has been estimated that the number of independent periods are
approximately n ∼ 100 [50].
The extreme wind speed distribution can be obtained via extrapolation of

the parent distribution or fitting of the year extremes with a Gumbel distribu-
tion. Given a Weibull parent distribution with shape factor larger than 1, the
Gumbel approach gives an overestimate of the extreme mean wind speed, while
for parent distributions with shape factor smaller than 1 the Gumbel distribu-
tion underestimates the extreme mean wind speed [26].
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The uncertainty concerning the number of independent periods of the mean
wind speed makes a direct estimate of the annual extreme wind speed via ex-
trapolation difficult. The difference in the estimate can be considerable. The
mean wind speed with a return period of 100 years is estimated from an ex-
trapolation of the Weibull parent distribution, using a number of independent
periods (in one year) of 100 and 8766. The estimates differ considerably, about
15%.
Although the maximum number of independent periods, 8776, may seem

too conservative, it is not a relevant issue here for the demonstration of the
methodology. Furthermore, the number of independent periods is not the only
factor that can affect the estimate of extreme wind speeds, other factors such
as terrain characteristic, type of wind climate etc., can have influences on the
estimate as well.
Alternatively, one can fit the annual extreme mean wind speeds to an ex-

treme value distribution. The advantage is that the yearly extremes can be
regarded as independent. However, the number of data points is limited to the
number of years, in which data are available. Since the number of years is less
than 20, the outcome can be uncertain. In this study, the extreme mean wind
speed is determined from the extrapolation of the parent distribution.

3.3 Wave climate

3.3.1 Short-term description of wave

The waves are considered to be a stationary process for a period between 1 to
6 hours. Moreover, the wave elevation is usually considered as a zero mean
Gaussian process. As with the wind, the Gaussian assumption is an approx-
imation. To characterise the wave, different parameters are used. One is the
significant wave height, which is defined as the mean value of the highest 1/3
of the waves. In a spectral description, the significant wave height is related to
the standard deviation of the process through the definition.

Hs = 4
√
m0 (3.6)

where m0 is the zero-th spectral moment. The n-th spectral moment is defined
as

mn =

Z
fnS(f)df (3.7)

The zero-th spectral moment represents the total energy content of the wave
spectrum. The other wave parameter is the wave period. The one used here
is the mean zero-upcrossing period Tz, which is defined by the ratio between
the length of the record (in seconds) and the number of zero up-crossings. The
zero-upcrossing period is also defined in term of the spectral moments [18]
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Tz =

r
m0

m2
(3.8)

There are other characteristic wave periods such as the peak period, which
is the period where the wave spectrum has a maximum. In this study, the wave
period refers to the mean zero-upcrossing period, if it is not explicitly specified.
The wave in a sea state can be described with a variance spectrum. There

are numerous spectral representations of the wave. The classical spectrum of
Pierson-Moskowitz (P-M) describes a fully developed sea state. For a partially
developed sea state, the JONSWAP [3] spectrum is usually applied. In general,
one can say that the P-M spectrum has a larger spreading of the wave energy,
while the JONSWAP spectrum has a more pronounced spectral peak. This
peak can be of importance for the response if the fundamental frequency of the
support structure is close to the peak frequency.
The choice of the spectrum certainly has effect on the extreme response,

though in many cases the choice can not be done on an entirely objective basis.
It has to be considered from case to case. For this application the P-M spectrum
is chosen. This choice does not mean that the P-M spectrum is considered as
the most appropriate wave spectrum for this shallow water site. It is also a
variable in the design process. The final choice of the spectrum is left to the
designer who applies this probabilistic methodology.

3.3.2 long-term description of wave

The long term description of waves is similar to that of the wind. The significant
wave heights Hs extracted from the hindcast database are used to determine
the cumulative distribution. The relationship between significant wave height
and wave period, Tz is not deterministic. Thus, the wave elevation has a two
dimensional probability distribution. In the following section the issue on the
joint probability distribution will be discussed. In any case, if in situ data are
available then the measured data should be used.
The significant wave height can be fitted to the Weibull distribution. This

can be the two parameter Weibull distribution or the three parameter Weibull
distribution (which contains an extra location parameter). The return period
of the extreme Hs is determined in an analogous way as the extreme mean
wind speed. The fitted Weibull distribution is the parent distribution of the
significant wave height. The parent distribution can be extrapolated given a
number of independent periods. The extrapolation of the significant wave height
faces the same dilemma concerning the number of independent periods as the
extrapolation of the parent distribution of the mean wind speed. The stationary
period of waves can vary between 1 to 6 hours. This means also that the number
of independent periods can differ. In this case, the number of independent period
is chosen as 8766/3, assuming a stationary period of 3 hours for the waves.
An alternative to the extrapolation model is the fitting of the annual extreme

Hs. The annual extreme Hs can be fitted to an EV type I distribution (Gumbel
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Figure 3.1: Scatter diagram of significant wave height and zero upcrossing period
(part per thousand) with a stationary length of 3 hours, for a mean wind speed
of 13 m/s (+ represents part that is less than 1).

distribution). The advantages and disadvantages are the same as for the fitting
of the annual extreme mean wind speeds.
In this thesis, the extreme Hs is determined from extrapolation of the par-

ent distribution. This is done at the expense of bearing the uncertainty of the
number of independent periods. However, the influence of the number of inde-
pendent periods is less significant for long return periods, e.g. 50 or 100 years
[100].

3.4 Occurrence probability of the sea states

In the previous sections, the mean wind speed and significant wave height are
treated separately. In reality, a certain correlation exists between the two vari-
ables. To obtain a joint occurrence probability of the sea states, the hindcast
data can be treated in two different ways. The sea states can be sorted into
bins according to the mean wind speed, significant wave height and wave period.
This discrete presentation of the sea states is visualised as a scatter diagram.
Figure 3.1 shows a scatter diagram for a given mean wind speed, depicting dif-
ferent combinations of the significant wave heights and wave periods. Observe
that the term sea state is used in a broader sense to include the mean wind
speed as a parameter.
For a continuous distribution of the sea state parameters, a statistical proce-

dure has to be applied to the hindcast data in order to obtain a joint probability
density of the mean wind speed, significant wave height and wave period. Dif-
ferent procedures exist using different distributions and dependencies structures
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Figure 3.2: Histogram of the mean wind speeds and the a Weibull PDF corre-
sponding to the fitted CDF.

( see [10], [104] and [56]). Here, the conditional distribution approach shown in
[56] is applied to the hindcast data. The basic idea is that the joint probabil-
ity density function can be written as a product of the conditional Probability
Density Functions (PDF), namely

f(Ū ,Hs, Tz) = f(Ū) · f(Hs|Ū) · f(Tz|Ū ,Hs) (3.9)

where f(U) is the marginal distribution of the mean wind speed Ū , f(Hs|Ū)
is the conditional distribution of the significant wave height for a given mean
wind speed and f(Tz|Ū ,Hs) is the conditional distribution of the wave period
(in this case it is the mean upcrossing period) conditioned on the mean wind
speed and the significant wave height. The marginal distribution of the mean
wind speed is obtained by fitting all the mean wind speeds in the data to a
cumulative distribution function (CDF). In this case, the 2 parameter Weibull
distribution is chosen. The 2 parameter Weibull distribution is defined as

F (x) = 1− e−(
x
s )

k

(3.10)

s is a scale parameter and k is a shape parameter. Figure 3.2 shows the his-
togram of the mean wind speed together with the corresponding Weibull PDF3.
Every mean wind speed is divided into classes of 2 m/s width. The significant

wave heights that corresponds to each wind class is fitted to a 2 parameter
3The mean wind speed is fitted to a Cumulative Distribution Function(CDF). From the

fitted CDF, the corresponding PDF is obtained.
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Figure 3.3: Scale factors of the conditional distribution of Hs.

Weibull distribution. From the Weibull plot of the significant wave heights (not
shown here), it shows that the significant wave heights can be modelled with
a two parameter Weibull distribution. The Hs plotted in the Weibull scale
forms nearly a straight line, especially for Hs which corresponds to higher mean
wind speeds. The distribution parameters can be written as a function of the
mean wind speed. By doing this, a continuous description of the conditional
distribution of the Hs can be obtained. Figure 3.3 shows the scale parameter
and Figure 3.4 shows the shape parameter of the Weibull distribution of the Hs
as function of the mean wind speed.
Dots in the figures represent the fitted values of the distribution, the straight

line is the regression curve. In [56] a power law for the regression curve was
suggested; in this case a linear regression is sufficient. The resulting equation of
the linear regression is also shown in the plot. The scatter of the shape parameter
is comparatively larger than the scatter of the scale parameter. Nevertheless,
the regression curve captures the trend of the shape factor satisfactorily. One
can improve the regression behaviour by adding a quadratic term. In this case,
the difference of the estimates of higher fractiles is, however, negligible.
The distribution of the zero upcrossing period can be usually described by

a Log-Normal distribution. The mean and standard deviation of the Tz is pa-
rameterised by the mean wind speed and significant wave height. In this case,
it is observed that the scatter around the mean wind speed and wave height is
small for high wind speeds. For this reason the mean zero upcrossing period
is determined by the mean wind speed and significant wave height through a
linear regression. The following model is used

Tz = c0 + cūŪ + cHsHs (3.11)

co, cū and cHsare the regression parameters. Indeed, Equation 3.11 ignores
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Figure 3.4: Shape factors of the conditional distribution of Hs.

the variability of the Tz, for a given combination of Hs and Ū , but this variation
is relatively small as can be seen in Figures 3.5 and 3.6. Since the areas of interest
for the extrapolation are the high wind speeds, only the data in which the mean
wind speed is higher than 20 m/s is used for the regression. Figure 3.5 shows
the predicted Tz versus the Tz of the data for all the sea states with a mean
wind speed above 20 m/s. It can be seen that the regression model captures the
Tz in a satisfactory way.
Figure 3.6 shows the same as the previous figure but for all the significant

wave heights above 4 m. It can be seen that the predicted value of Tz is usually
lower than the data. This is caused by the fact that not all the sea states with
Hs higher than 4 m do correspond to the strong wind situations. If the extreme
response of the wind turbine is likely to occur during strong wind, (but not
only during strong wind situations), the linear regression model of the Tz can
be regarded as sufficient.
The joint probability density of the mean wind speed and significant wave

height is transformed into a standard normal space of uncorrelated variables
using Rosenblatt transformation [77]. The 100 year contour line describes a
circle in this normalised space. The radius r of the circle is determined by

Φ(r) = 1− 1

N100
(3.12)

where, Φ is the standard normal distribution and N100 is the total number
of sea states in 100 years. The contour in the physical space can be determined
by transforming the standard normal variables back to the physical variables.
Figure 3.7 shows the 50 year environmental contour line. Assuming that the
response is proportional to the wind speed and wave height then the maximum
response is likely to occur at sea states between the maximum mean wind speed
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Figure 3.5: Predicted Tz from linear regression and data (mean wind speed >20
m/s).
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Figure 3.6: Predicted Tz from linear regression and data (significant wave height
> 4 m).
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Figure 3.7: Contour plot of the joint PDF of the mean wind speed and significant
wave height.

with the associated wave height and the maximum significant wave height with
the associated wind speed.

One can determine the 100 year mean wind speed and significant wave height
from the marginal distributions of the mean wind speed and significant wave
height. However, the correlation between the wind and wave is neglected in that
case. Alternatively, a 100 year environmental contour can be determined from
the joint probability density function of the mean wind speed and significant
wave height. The 100 year contour contains an infinite number of combinations
between the mean wind speed and the significant wave height. Table 3.1 shows
two special combinations from the contour line, one that corresponds to the
maximum mean wind speed with the respective significant wave height and the
other one to the maximum significant wave height with the respective mean
wind speed.

This table is needed later when the deterministic load condition has to be
determined from the 100 year sea state parameters. It can be seen that by taking
into account the correlation between wind and waves, the estimates of the 100
year sea state parameters are not significantly different from the estimates using
the marginal distributions. Moreover, the joint probability density gives even a
higher estimate of the significant wave height than the marginal one. The reason
is that the Equation 3.9 preserves the marginal distribution of the independent
variable. Here, the mean wind speed is chosen as the independent variable.
The marginal distribution of the significant wave height is not preserved. The
overestimate has also to do with the fact that the regression curve predicts a
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Table 3.1: 100 year mean wind speed and significant wave height estimated from
marginal and joint distributions

Ū Hs Tz
(m/s) (m) (s)

Marginal distribution 34.5 6.30 7.68
Joint PDF max wind 34.5 6.45 7.78
Joint PDF max wave 32.7 6.70 7.95

smaller shape parameter than the fitted one (see Figure 3.4). A smaller shape
parameter leads to a larger estimate of the extreme values of the distribution
(see also Figure 8.12).
In this case, the joint probability density approach has not shown substantial

benefits compared to the marginal distribution approach, partly because there
is a strong correlation between the extreme mean wind speed and the extreme
significant wave height. This can be observed in Figure 3.7.

3.5 Design Extreme Conditions

3.5.1 Extreme wind gust

The previous section deals with the long-term probability (e.g. 100 year sea state
parameters). However, the deterministic design condition is usually specified in
terms of a maximum wind speed averaged over a short period, e.g. 3 seconds,
and a maximum wave height with a given probability of exceedence and the
associated period. These design parameters can be determined from the short-
term statistics if the sea state parameters are known.
For the extreme design conditions, gust speeds of different averaging period

are determined. The gust factor is determined as [97]

u0 = 0.42 ln(T1/T2) (3.13)

T1 is the averaging period of the mean wind speed (10 minutes to 1 hour) and
T2 is the gust averaging period (3 seconds to 1 minute). Thus, the mean wind
speed for an averaging period of T1 can be converted to wind gust speeds of
an averaging period of T2, taken into account that the relationship between the
gust factor u0, the turbulence intensity It and the mean wind speed Ū . The
wind speed of shorter averaging period u is

u = (u0 · It + 1)Ū (3.14)

The extreme mean wind speed can be determined using the approach out-
lined in the preceding section. The calculated extreme mean wind speed with
a return period of 50 or 100 years is different from location to location. The
GL offshore guideline has specified the extreme mean wind speeds according to
wind turbine classes. For example, the wind turbine class one has a 50 year
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extreme mean wind speed of 50 m/s with an averaging period of 10 minutes.
Wind turbine class one has the most demanding design mean wind speed.
This mean wind speed is much higher than the one shown in Table 3.1.

However, the difference will decrease slightly if one takes into account the fact
that the hindcast mean wind speeds have an averaging period of 1 hour. This can
be converted to a 10 minute mean wind speed by an increase of approximately
10% according to the GL guideline. Furthermore, the extrapolation of the
extreme mean wind speed depends strongly on the data used to fit the joint
distributions.

3.5.2 Extreme wave height

For the deterministic extreme wave model, the maximum wave height has to
be determined. The following distribution of the maximum wave height was
proposed [40]:

FHmax|Hsmax
(Hmax|Hsmax) = exp(−Nwave · exp[−δ · (Hmax/Hsmax)k]) (3.15)

with the distribution parameter δ = 2.26 , k = 2.13. Hsmax is the significant
wave height of the sea state considered, in this case the 100 year sea state.
Nwave is the number of waves defined by

Nwave =
τ

Tz|Hsmax
(3.16)

where τ is the length of the stationary period of the sea state (in this case, it is
assumed to be 3 hours) and Tz|Hsmax is the zero upcrossing period for a given
significant wave height. Equation 3.15 gives the probability of the largest wave in
a stationary period, in contrast with the Rayleigh distribution of the individual
wave height within a stationary period used in [43]. The Rayleigh distribution
gives the exceedence probability of a given wave height, while Equation 3.15
gives the probability of the largest wave within a stationary period.
The design wave height can be defined, for example, as the wave height with

an exceedence probability of 1%. A less severe design wave is the most probable
wave height (the maximum of the probability density function). In this thesis,
the former criterion of the design wave is applied. The associated wave period
to the extreme wave height can be estimated as [33]

THmax = 1.2 · Tz (3.17)

Another alternative to detemine the extreme wave height and the wave pe-
riod from a joint distribution of these two variables [85].

3.5.3 Combination of the extreme wind gust and the ex-
treme wave height

For the external condition based method, the extreme condition is often ex-
pressed in terms of an extreme gust speed with an extreme wave height. Ob-
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Table 3.2: Load combination of the individual extreme wind and waves specified
in the GL design codes
Load case Wind speed Wave height Wave period
case 1 50 year, 3 second gust 1.32·Hs (50 year) 1.2·Tz
case 2 50 year, 1 minute gust 1.86·Hs (50 year) 1.2·Tz

viously the chance that the maximum of an extreme wind gust occurs simulta-
neously with the maximum of an extreme wave is not very big, however, often
there is no better alternative than the assumption of simultaneous occurrence.
Two combination cases have been suggested in [66]. These two combination

cases are listed in Table 3.2.
Case 1, the 3 second averaged gust speed with a return period of 50 years

is combined with a reduced wave height. Case 2, the one minute averaged
gust wind speed is combined with an extreme wave height with an exceedence
probability of 0.1%. The reduced wave height has been obtained by taking that
both load cases have the same joint cumulative probability.
It is assumed that the wind and waves are independent processes within the

stationary period. Thus, the joint cumulative probability function is simply the
product of the cumulative distribution of the wind speed (i.e. the turbulent
part) and the cumulative distribution of the individual wave height. It is to
be noticed that the joint cumulative probability has not the illustrative inter-
pretation as the one dimensional cumulative probability. In a one dimensional
CDF, a cumulative probability of 0.99 can be interpreted as an event with 1%
exceedence chance. If the CDF is the distribution of annual extremes, the 1%
exceedence corresponds to a return period of 100 years. For the joint cumula-
tive probability, the 0.99 probability represents the product of the cumulative
probabilities of the wind speed and wave heights without much information on
the exceedence probability.
For example, to produce a joint cumulative probability of 0.99, one can

choose a cumulative probability of a wind speed of 0.99 and a cumulative prob-
ability of a wave height of 0.99 (the bar denote a repetition till infinity). This
means that one can choose a wave height of infinitively large return period and
still the joint cumulative probability remains 0.99. Apparently this information
obtained from the joint cumulative probability is not very useful. For this rea-
son, it is more illustrative to work with the joint probability density function
which gives more useful information concerning the joint occurrence of the wind
and waves.
Using the GL combination criteria, the numerical values of the two extreme

load combinations can be determined. Instead of a 50 year mean wind speed, a
100 year mean wind speed is used. The mean wind speeds (and significant wave
heights) need to be converted to the same return period. The 100 year mean
wind speed is approximately 3% higher than the 50 year mean wind speed.
These two 100 year combined load cases are specified in Table 3.3 using the
extreme mean wind speed of the wind turbine type class I from the GL Offshore
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Table 3.3: Two different combinations of the extreme wave height and wind
speed of a 100 year return period sea state, using the parameters given by GL
wind turbine class I

Extreme load combinations
1 2

wind speed 63.3 m/s 54.7 m/s
wave height 8.31 m 11.71 m
wave period 9.22 s 9.22 s

Wind Turbine guideline and a turbulence intensity of 12%.
The other alternative to specify the two extreme load combinations is to use

the mean wind speed and the significant wave height determined from the 100
year contour of the joint probability density function (see Table 3.1) .In this
case, there are 4 different combinations as shown in Table 3.4. The turbulence
intensity used here is also 12%.
As can be seen, the difference in the extreme gust speed is quite considerable

for this location. On the one hand, the specification of the extreme mean wind
speed from the GL guideline is more on the conservative side because it should
be applicable to different site conditions. On the other hand, the uncertainties
can be considerable in the determination of the 100 year mean wind speed using
the joint probability density function. This is because of the limited amount of
data (in this case less than 10 years), from which the 100 year mean wind speed
is extrapolated. This applies to the extrapolation of the extreme wave height
as well.
The discrepancy between the extreme wave heights in Table 3.4 and Table

3.3 can be explained by the distribution functions used to determine the extreme
(individual) wave height. In this thesis, a probability of exceedence of 1% for
the largest wave in a stationary period is chosen. In the GL case, a probability
of exceedence of 0.1% is chosen for the distribution of all the local maxima of the
waves. More specifically, GL uses a Rayleigh distribution for the probability of
local maxima of the wave heights while Equation 3.15 refers to the probability
of the largest wave height in a given stationary period. For this reason these
two design wave heights are not directly comparable.
To make a comparison, one can extrapolate the Rayleigh distribution of the

wave maxima with the number of waves defined in Equation 3.16. By doing
this, the probability of exceedence of the wave heights in Table 3.3 within a
stationary period of 1 hour can be determined. Given a wave height of 11.7
m, the probability of exceedence is 0.35. This means that the chance that the
largest wave in the stationary period is higher than 11.7 m (see Table 3.3) is
35%. Therefore, the choice of 0.1% exceedence for the distribution of local
maxima of the wave height seems to underestimate the maximum wave height
in a stationary period.
The reason is that Rayleigh distribution is more conservative because it

represents the distribution of local maxima of a narrow band process. Hence it
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Table 3.4: Two different combinations of the extreme wave height and wind
speeds using the 100 year environmental contour of the joint PDF

100 year sea state 1 100 year sea state 2
LC 2 LC 1 LC 2 LC 1

wind speed 46.9 m/s 41.5 m/s 44.4 m/s 39.3 m/s
wave height 10.2 m 13.4 m 10.6 m 13.9 m
wave period 9.2 s 9.4 s 9.2 s 9.4 s
LC: load combination

is preferable to use Equation 3.15, which specifies the distribution of the largest
wave in a stationary period.
Another possibility for the combination of extreme wind and waves is the

Turkstra rule [64]. It assumes that the maximum of the combined load condition
is the maximum value of one process (e.g. wind speed) with an arbitrary value
of the other process (e.g. wave height). For example, if wind is the dominant
load then a combined load case can be a 100 year, 3 second gust, with random
waves corresponding to a 100 year significant wave height. The random wave
height gives an arbitrary value at the instant that the maximum gust speed
occurs. Although, tt has to be noticed that the Turkstra rule gives an lower
bound of the load combination, i.e. it can underestimate the actual combined
loads.
It is not possible to determine beforehand the load combination that will

present the most severe load situation to the wind turbine. The combinations
given here are based on the assumption that an extreme wind gust and/or
extreme wave will induce an extreme response in the OWT.
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Chapter 4

Wind turbine concepts

4.1 Wind turbines in general

The wind turbine concepts that have been conceived are very diverse. In general,
there are two basic concepts, the vertical axis wind turbine and the horizontal
axis wind turbine. The main advantage of a vertical axis wind turbine is that
the operation is independent of the wind direction. Furthermore, the machinery
is usually located at the tower base and are easily accessible for maintenance.
However, the stability and dynamic problems associated with large vertical axis
wind turbines have hindered this concept to be commercially successful. Never-
theless, the vertical axis wind turbine is still popular among small wind turbines.
Most of the wind turbines manufactured today for the electricity production

are horizontal axis wind turbines. The advance of the horizontal axis wind
turbines has profited from the researches of helicopter aerodynamics making
it a more efficient concept than the vertical axis wind turbines. Moreover,
the early success of the Danish concept (horizontal axis, stall regulated power
control, constant speed, asynchronous generator with direct grid connection) has
contributed to the present market dominance of horizontal axis wind turbines.
The main advantages of the horizontal axis wind turbine are the simplicity
and robustness and a disadvantage is that a horizontal wind turbine needs an
auxiliary yaw system to position the wind turbine in the wind direction.
One can also divide the wind turbine concepts according to the functioning

principle, a lift concept and a drag concept. Lift based wind turbines use the
lift forces of the rotor to drive the shaft. They are more efficient than wind
turbines that use the drag forces. Drag based machines are usually low speed
and high torque, which makes them less suitable for electricity generation.
The two example turbines considered here are horizontal axis wind turbines.

They use two different power regulation concepts. An active power control is
the pitch control, which regulates the power by pitching the blades. A passive
control is the stall control, it uses the stall effect to reduce the lift forces. Figure
4.1 shows different configurations of wind turbines using lift and drag principles.

35



36 CHAPTER 4. WIND TURBINE CONCEPTS

          Lift                           Lift                                                         Drag 

Figure 4.1: Different configurations of wind turbines from left to the right,
horizontal axis lift, vertical axis lift ( c° 1998 by the American Wind Energy
Association) and vertical drag ( c° 1998 by the Windside Production Ltd.)
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4.2 Subsystems of horizontal axis wind turbines

A typical horizontal axis wind turbine consists of the following subsystems:
Rotor
The rotor is the interface between the kinetic energy of the wind and the

mechanical power of the shaft. The rotor of wind turbines for electricity pro-
duction usually consists of 2 or 3 blades, although a 1 blade design does exist as
well but is not widely used. The main material for the rotor blades is glass fibres
or carbon fibres reinforced plastics. Wood is also used for the blade production,
which is a more environmentally friendly material.
Drive train
The drive train contains the low speed shaft driven by the rotor, a gearbox

and the high speed shaft connected to the generator. The gearbox transforms
the high torque low speed rotation to low torque high speed rotation to meet
the generator frequency.
Electrical system
The main component of the electrical system is the generator. It converts

the mechanical energy into electrical energy. There are direct drive systems that
connect the low speed shaft directly to a low speed generator, eliminating the
need of gearboxes.
Yaw system
Horizontal axis wind turbines need a yaw system to move the turbine in

the wind direction. For large wind turbines, an active yaw motor moves the
turbine to the wind direction. Passive yaw systems can be used for smaller
wind turbines. The misalignment of the wind direction with the rotation axis
of the turbine blades induces extra structural loads and reduces the efficiency
of the wind turbine as well. The degree of misalignment is defined here in yaw
angles.
Nacelle
The nacelle accommodates the machiney and prevents the direct exposure

of the machinery to the environment. It also transfers the loads from the rotor
to the tower.
Tower/ support structures
The tower transfers the load from the nacelle to the foundation. For offshore

wind turbines, the support structure comprises the tower and the foundation.
Typical designs of onshore towers are tubular towers or lattice towers. Typical
support structures are monotower, tripod, lattice tower, with gravity based or
piled foundations.
Power control systems
The main purpose of the control system is to limit the energy output. There

are two basic concepts to regulate the power production [41]. The active one,
pitch control, regulates the power output through pitching of the blade, i.e.
decreasing the angles of attack at a constant rotational speed. Hence it changes
also the aerodynamic forces on the blade. The passive control concept uses the
stall principle. By keeping a constant rotational speed of the rotor regardless
of the mean wind speed, the angle of attack will increase with the mean wind
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Figure 4.2: Different subsystems of a typical horizontal axis wind turbine.
( c°1997 DOE)

speed. The idea is to achieve a controlled stall of the flow above the nominal
mean wind speed, increasing the drag forces, thus limiting the power output.
Between these two basic concepts there is a whole range of hybrid concepts. In
this case only these two basic concepts are taken into account. Figure 4.2 shows
the schematic illustration of the different subsystems of a wind turbine.

4.3 Operational range of the wind turbine

The operational range of the wind turbine is defined by two wind speeds. The
cut-in wind speed, which is the minimum wind speed at which a wind turbine
starts producing energy, and the cut-out wind speed, which is the maximum
wind speed at which a wind turbine can operate. Another characteristic wind
speed is the rated wind speed. It is the wind speed at which the nominal power
of a wind turbine is reached. These three wind speeds are shown in two power
curves (see Figure 4.3) of two types of wind turbines.
The wind turbine starts operating at the cut-in wind speed, the power output

increases with the third power of the wind speed. The nominal power output is
reached at the rated wind speed. Until this point both types of wind turbines
behave in a similar way. The difference lies in the higher wind speed regions
where the power output has to be limited. The pitch controlled wind turbine
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Figure 4.3: Power curves of a pitch regulated and a stall regulated wind turbine.

usually pitches the blade in the positive direction reducing the angle of attack,
hence decreasing also the lift force and torque. This type of power control is
more precise because the flow is still attached to the airfoil and the forces can
be predicted with fair accuracy.
The passive stall control keeps the rotational speed constant, thus the angle

of attack increases with the wind speed. At higher wind speeds (higher angles
of attack), stall occurs, the flow is no longer attached to the airfoil and the lift
forces collapse. The problem with a passive stall control is that stall is a highly
non-linear unsteady phenomenon, thus the power output control becomes rather
erratic because the forces can not be predicted accurately. Figure 4.3 shows
idealised power curves, while in reality the fluctuation of the electrical power
output is much larger.
The two types of power regulation also give rise to different load characteris-

tics. Figure 4.4 shows the thrust forces of a pitch regulated and a stall regulated
turbine, taken from [16]. As can be seen the thrust force of a stall regulated
turbine increases monotonously with the wind speed. It has no possibility to
reduce the aerodynamic loads. Furthermore, due to the stall, the blade damp-
ing is lower than pitch regulated blades. In contrast with the stall regulated
turbines, the pitch regulated turbines can adjust the blade pitch angle to reduce
the aerodynamic loads, hence reducing the thrust forces.

4.4 Pitch controlled turbine

Two specific turbines are used throughout this thesis. The reference pitch reg-
ulated turbine is a design wind turbine for offshore application, developed by
Kvaerner Turbin and Kvaerner Oil & Gas Limited [38]. The turbine has two
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Figure 4.4: Rotor thrust forces of a pitch regulated and a stall regulated wind
turbine.

blades with a rotor diameter of 80 m. The rated wind speed is 13.7 m/s. The
blades are pitch controlled above the rated wind speed. The turbine has a rated
power of 3 MW. The support structure consists of a monopile directly connected
to a monotower through a flange. The water depth of the location is 20 m, see
Figure 4.5
After cut-out wind speeds, the blades are pitched in a position to reduce the

drag forces of the blade during storms. This means that the aerodynamic forces
do not contribute in a significant way to the tower bending during extreme wind
conditions.
In this thesis, it will be simply referred to as the pitch regulated wind turbine.

4.5 Stall controlled turbine

Besides the pitch controlled turbine, a reference stall turbine is also used for
comparison of different turbine concepts. The stalled regulated turbine has a
rated power of 1 MW with a rated mean wind speed of 16 m/s. The rotor
diameter is 54 m and it has a hub height of 48 m. The support structure is of
the monotower type with a monopile foundation. The water depth is 20 m. The
cut-in wind speed is 3.5 m/s and the cut-out wind speed is 25 m/s.
One should note that the absolute comparison of responses from these two

turbines is not relevant because the size of the these two turbines is not the
same. The main purpose is simply to identify the fundamental differences in
extreme responses dealing with two different control concepts. Observe that the
stall turbine does not have the possibilities of reducing the thrust forces during
a storm by blade pitching. This has an influence on the extreme response for the
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Figure 4.5: The dimensions of the pitch controlled turbine.
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support structure, since the contribution of the aerodynamic thrust is relatively
high compared to the pitch controlled turbine mentioned above.
In this thesis, it will be simply referred to as the stall regulated wind turbine.

Main data of the pitch regulated and stall regulated wind turbine are listed in
Appendix C.



Chapter 5

Load and Response models

5.1 General Description of Load and Response

Load models define mathematically the external loads perceived by the struc-
ture. The main sources of external loads are the fluctuating wind and wave
loads. The load models usually connect the kinematic variables of the external
processes (e.g. wind speed, water particle velocity, acceleration etc.) to external
loads (e.g. pressures, distributed forces, moments etc.).
The response model describes how the structure reacts to the external loads,

in terms of displacement, strain, stress etc. In this chapter, a short account is
given of the load models used in the simulation program. The load and response
models are based on engineering models widely used for design of wind turbines.
It is assumed that the load and response models used here are accurate enough
to predict the structural response. The uncertainties concerning the load and
response models are not taken into account.

5.2 Aerodynamic loading

The wind load has a component originating from the wind speed and another
component from the acceleration of the wind. However, for the blade response
the acceleration term is negligible because the frequencies from the acceleration
excitation are very high compared to the blade natural frequencies.
The classical blade momentum theory [98] forms the basis of the calculation

of the blade loads. The flow passing an airfoil will produce lift and drag forces.
The lift and drag forces are proportional to the relative velocity of the flow.
The relative velocity of the flow is determined by the incoming undisturbed
wind speed, the rotational speed of the rotor, the structural motion of the rotor
and the induced velocity. The induced velocity is a disturbance velocity induced
by the wind load on the rotor disk.
The lift and drag forces are also proportional to coefficients that charac-

terise the variation of the lift and drag forces with the angle of attack. The
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aerodynamic coefficients of the airfoils are determined from two dimensional
wind tunnel tests for a fixed blade section. Corrections of these coefficients
have been proposed for three dimensional flows on rotating blades.The main
effect of the correction is that the lift coefficients are higher than the prediction
from the two dimensional measurement for a calculated angle of attack. For a
more detailed description of the 3D effects see [82] [86].
The aerodynamics of unsteady flow conditions is still under continuous in-

vestigation. The dynamic inflow model implemented in the simulation pro-
gram DUWECS, applies a first order differential equation to account for the
unsteady aerodynamic effects. Stall is another highly nonlinear phenomenon.
An overview of the current status of the research on the rotor aerodynamics can
be found in [83].
The uncertainty concerning the calculation of the aerodynamic loading is

difficult to quantify. Especially during operation, the blade load and blade re-
sponse are affected largely by non-linear phenomena. During storms, when the
rotor is parked, the aerodynamic forces usually can be predicted with sufficient
accuracy. For the present study it is assumed that the current models imple-
mented in the simulation code predicts the aerodynamic loads satisfactorily.

5.3 Hydrodynamic loading

To compute the wave forces on the support structure, the wave kinematics must
be determined. The water particle kinematics can be calculated using different
theories. One can divide waves in two different categories, regular waves and
random waves.
Regular waves
Regular waves are waves that have a defined period and are repeated period-

ically. Within regular waves, one can distinguish between linear and non-lnear
waves. The linear wave theory is valid for waves of infinitely small amplitudes,
e.g. Airy linear wave theory. For finite amplitude waves, non-linear waves the-
ories apply, e.g. Stokes waves or Stream functions. The main characteristic
of non-linear waves is that the crest is higher and sharper while the trough is
rounder, compared to linear waves.
Random waves
Ocean waves have random characters and do not have a defined period.

Within random waves one can distinguish also between linear and non-linear
waves. The linear wave theory can be applied to generate random waves. The
basic idea is that the summation of a large number of linear regular waves
with random phases can reproduce random water waves. The enegy of different
frequency components is determined from a discretisation of the wave spectrum.
Non-linear random waves have a higher order correction of the non-linear

boundary conditions. The wave height distribution becomes non-Gaussian. The
non-linear random wave is numerically more cumbersome to implement [55].
For descriptions and comparisons concerning simulations of ocean waves refer
to [12].
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In this thesis, the random wave kinematics are calculated using the Airy
linear wave theory and regular non-linear waves are calculated using the Stream
functions. The hydrodynamic loading is caused by the water particle velocity
and acceleration. The forces that the moving water particles cause on a slender
structure can be described by the Morison equation. The Morison equation
assumes that the total wave forces consist of a linear addition of an inertial
component and a drag component.

f = CMρw
πD2

4

∂u

∂t
+ CDρw

D

2
|u|u (5.1)

f is the total force per unit length of the cylinder, ρw is the water density.
D is the cylinder diameter, u is the water particle velocity and ∂u

∂t .is the local
acceleration of the water particles. CM is an inertial coefficient and CD is a
drag coefficient. These coefficients are determined from laboratory tests. The
coefficients are functions of different parameters, the K-C (Keulegan-Carpenter)
number, Reynold number, and roughness parameter etc.[78].
The Morison equation is applicable for hydrodynamically transparent struc-

ture, that is, the diameter of the structure is small compared to the wave length.
For hydrodynamically compact structures, such as gravity based towers, diffrac-
tion theory has to be used [18]. Since only slender monopiles are considered for
the support structure, the use of the Morison equation is sufficient to model the
hydrodynamic loading. Current speed is not taken into account.
The integration of the hydrodynamic forces is carried out up to the mean

sea level throughout this study. The linear wave theory implemented in the
simulation program supports also Wheeler stretching [96]. Wheeler stretching
assumes that the kinematics of the water particles at the instantaneous free
surface are identical to those originally calculated at the still water level.
For the OWT in the coastal zone, the phenomena of breaking waves can

be an important design factor. The impact load of breaking waves can excite
the response from higher natural frequencies of the structure. However, the
quantification of breaking wave loads still needs further study. In the study
”Offshore Wind in the EC” [66] some simulation studies have been done on
the sensitivity of the structural response of the support structure to different
breaking wave models.
Two models were used, one based on the momentum theory and the other

one based on laboratory measurements. The impact force on the structure is
modelled as a triangular impulse. The result shows that the structural response
is much lower than the external load integrated over the structure. The reason
is that the short duration of the impact load does not have a large effect on
the dynamic response of the structure. In a technical report [95] of the study
”Offshore Wind in the EC”, 5 and 10 modes for the support structure are used
in the calculation of the dynamic response. However, the difference between the
responses calculated using 5 and 10 dynamic modes is insignificant.
Nevertheless, the uncertainties concerning the modelling of breaking wave

loads are large. The breaking process is certainly not deterministic and the
idealisation of the breaking wave loads as impact loads, the modelling of the
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impact loads with triangular impulses etc., have an influence on the breaking
wave response. In the study ”Offshore wind in the EC”, it has been shown
that the higher modes do not increase the response. However, this conclusion
assumes that the breaking wave forces are modelled accurately. A probabilistic
description of the breaking wave loads is necessary to integrate the variation of
the breaking wave response into the extreme response analysis. For the time
being this is not considered in this thesis.

5.4 Response calculation with DUWECS

DUWECS is a time domain simulation program that is capable of simulating
the response of an offshore wind turbine. It includes the dynamics of the differ-
ent components of an OWT. The major components and their interactions are
illustrated in Figure 5.1 The tower model in DUWECS is a modal representa-
tion of the physical model built with the finite element program ANSYS. The
modal analysis also includes the soil properties modelled as distributed springs
and dampers.

It has to be noticed that the modal decomposition is efficient for calculation
of dynamic response. The structural response of the support structure has a
considerable quasi-static part. In the modelling of the support structure 20
modes are used, 10 dynamic modes and 10 static modes. The static modes are
included for a better capture of the quasi-static part of the response

The rotor is modelled as a hub with hinged blades with flap and lead-lag
flexibilities. This means that the blade itself is rigid and the flexibilities are
concentrated on the hinge springs at the hub. This implies that estimates of
the blade tip displacement using the hinge model may not be accurate enough
because the flexibilities are distributed along the blade and not concentrated.
However, for estimates of the blade root bending moment, the hinge model is
sufficiently accurate, taken into account the uncertainties of the aerodynamic
loads [15]. Moreover, comparison of 8 European wind turbine design codes have
shown that using more advanced blade models (based on multibody dynamics or
modal models, etc.) does not necessarily improve the blade response calculation
compared to field measurements [80].

The controller has a crucial influence on the response of the rotor. It provides
an active feedback of the rotor to a change in the external conditions in order to
maximise the energy output and minimise the structural loads. For an overview
of the DUWECS features and modules see [102].

The equations of motion are solved using a Runge Kutta time marching
scheme and the results are stored in Matlab files. The outputs that are used
here in the statistical analysis are the flap moment at the blade root and the
overturning moment at the sea bottom.
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5.5 Response calculation in the frequency do-
main

The extreme response of an offshore wind turbine can be calculated in the fre-
quency domain using linear models. The reason for using the frequency domain
approach is because it requires less computational effort than the time domain
approach.
However, it has its limitations as well. A simple calculation in frequency

domain is limited to linear models with linear response characteristics. A usual
assumption is that the input load is Gaussian, consequently the response is also
Gaussian, due to the linearity of the structure and the load models. In many
cases this means linearisations of the input loads, hence lnearised structural
responses.
The presence of non-proportional damping, e.g. from the foundation or the

rotation of the blade structure, requires further simplifications of the equations
of motion. The resulting structural response is Gaussian.
The frequency domain method can be extended for non-linear problems.

However, the simplicity and elegance of the method is overshadowed by the
required mathematical manipulations. In spite of the limitations, it is a fast
way to obtain a rough estimate of the response required for the preliminary
design.
In Appendix B, the frequency domain method is applied to a stall controlled

wind turbine to obtain the extreme responses during standstill.



Chapter 6

External load parameters

6.1 Table of the parameters variation

The number of external load parameters is numerous. To determine which of
them have to be taken into account as stochastic variables, it is necessary to
study the influence of these parameters on the response. The stochastic variables
considered here are listed in Table 6.1 with the variable’s range specified in it.
The ranges specified are values that can occur in service life conditions. The
choice of stochastic variables is limited and partially arbitrary, assuming that
those chosen ones can have significant influence on the response variation. The
pitch controlled turbine is used here to study the variation of the response.

The reference values of the load conditions is also specified in Table 6.1. The
response of the reference load condition is compared to the response produced
by the variation of the stochastic variables. Only one variable is changed at one
time, while the rest of the variables maintains the reference value. In this way the
relative influence of the stochastic variables can be quantified. All the load cases
are limited to the normal operational range of the turbine, i.e. the wind speed
is between the cut-in and cut-out wind speed. The reason is that the extreme
response for this pitch controlled turbine occurs during operating conditions.
The reference mean wind speed is 13 m/s because the response characteristic
at this wind speed is similar to a stall controlled turbine. Thus, the conclusions
drawn from here can be applied partially to the stall controlled wind turbine as
well. The simulation length is 10 minutes and for every variation 10 simulations
are carried out.

From every simulation the maximum responses, the flap moment and the
OTM, are determined. Subsequently the mean value of the 10 maximum re-
sponses are calculated. The mean values of the maximum responses are nor-
malised with the mean values of the maximum responses of the reference load
condition. This ratio is used to indicate the influence of the stochastic variable
on the the extreme response.

49
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Table 6.1: Variation ranges and reference values of the stochastic variables
Stochastic Variation range Reference
variables value
Mean wind speed Ū 8 m/s to 24 m/s 13 m/s
Turbulence intensity It 10 % to 20 % 12%
Wind shear exponent α 0.11 to 0.16 0.11
Yaw misalignment angle φy —30 degrees to 30 degrees 0 degree
Significant wave height Hs 0.75 m to 6.75 m 2.27 m
Zero upcrossing period Tz 3.5 s to 8.5 s 5.5 s
Current speed Uc 0 m/s to 1.6m/s 0 m/s

6.2 Mean wind speed

Figure 6.1 shows the variation of the extreme flap moment and the overturning
moment of the support structure at the sea bottom. The mean values of the
maximum value from the maxima of 10 simulations are shown. The values
shown are normalised with respect to the reference response at 13 m/s. As one
may presume beforehand, the mean wind speed exerts a significant influence on
the load. For a non-rotating and passive structure the axial load induced by
the wind speed increases as the mean wind speed increases. However, the active
influence of the wind turbine on the load itself through the controller changes
the load characteristic of a wind turbine.
In this case the load increases with the mean wind speed till the rated wind

speed. The load maximum is located near the rated wind speed. At higher wind
speeds, the load decreases to a level comparable to those of the below rated wind
speed (Figure 6.1). As comparison, Figure 4.4 shows the thrust forces of a pitch
regulated and a stall regulated wind turbine. The thrust forces of the stall
regulated turbine increase monotonically with the mean wind speed. The flap
moment of the blade of a stall regulated wind turbine has qualitatively the same
behaviour as the thrust force. This means that even though the controller is
not a stochastic variable, the influence of the controller can not be neglected.
For the support structure the mean wind speed also plays a relevant role.

The influence from the rotor can be clearly seen. The variation of the response
of the support structure follows the variation of the rotor response. There is a
slight difference at higher wind speeds; for the support structure the decrease
in response is less pronounced. The controller effectively reduces the rotor flap
moment by pitching, but the total thrust of the rotor is not reduced as sig-
nificantly as the flap moment. This component contributes significantly to the
bending of the support structure.

6.3 Turbulence intensity

The second parameter considered here is the turbulence intensity. The offshore
wind measurements showed that the turbulence intensity fluctuates with the
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Figure 6.1: Variation of the maximum response with respect to the mean wind
speed.

mean wind speed. The mean turbulence intensity generally increases with the
mean wind speed, as the roughness of the sea surface is a function of the mean
wind speed. However, measurements in the Danish North Sea have shown that
at low wind speeds the turbulence intensity can be high, it decreases with the
mean wind speed up to about 10 m/s and then increases again with the mean
wind speed [47].
The measured turbulence intensity varies also for a given mean wind speed.

This spreading of the turbulence intensity is smaller at high wind speeds and
larger at low wind speeds. Generally, it is assumed that the offshore wind has
a lower turbulence intensity than the onshore wind. Measurements have shown
averaged values of the turbulence intensity of around 10% . The offshore wind
turbine guideline from Germanischer Lloyd prescribes a turbulence intensity of
12%. For a turbine in a wind farm, the level of turbulence can increase due to
the wake effect to 20%.
Figure 6.2 shows the variation of the extreme responses of the turbine with

different turbulence intensities. The mean, and maximum of the flap moment
and OTM are normalised with respect to the response with a turbulence inten-
sity of 12%. The maximum increase in response is around 10 % compared to
the reference response. The effect of the turbulence increase is more evident for
the blade than for the support structure. The mean OTM does not increase
much as the turbulence intensity increases from 10% to 20%. The maximum of
the OTM has a significant increase at a turbulence intensity of 20%.
One has to be aware of the fact that for higher mean wind speeds, the effect

of the turbulence can be more significant because the wind speed fluctuation is
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Figure 6.2: Variation of the mean of the extreme responses with the turbulence
intensity; normalised with the mean of the extreme responses of the reference
load condition.

increased in absolute terms even with a constant turbulence intensity. Instead
of assuming a constant turbulence, the effect of the turbulence can be taken
into account by taking the turbulence intensity as a function of the mean wind
speed. In this case, a mean turbulence intensity is used because the variation of
the turbulence intensity for a given mean wind speed is not taken into account.

6.4 Wind shear
The mean wind speed is a function of the height and the mean wind speed
profile can be described by the power law (see Equation 3.4). As mentioned
before the power law is an empirical formulation without physical background.
Instead of varying the roughness length itself, the exponent of the power law
is chosen as a variable. The exponent is a function of the surface roughness.
For the open sea, the surface roughness is dependent on the sea state, thus it
is not a constant value. However, most of the guidelines use a fixed value for
the roughness length. The Germanischer Lloyd guideline suggests a wind shear
exponent of 0.11 for offshore and 0.16 for onshore locations. The variation of the
extreme response is studied for wind shear exponents between 10% and 20%.
From the response calculations, it becomes clear that the change in wind

shear exponent has almost no effect on the extreme responses of the rotor and
of the support structure. This is not surprising, since the maximum difference
in the mean wind speed at the rotor tip is less than 5 percent of the mean wind
speed at hub height within the variation range of the wind shear exponent [23].
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However, it has to be noticed that for very large wind turbines, the problem
may not be the variation of the wind shear exponent but rather about the
validity of the wind shear model. The dimension of the rotor may exceed the
internal boundary layer [52] and the wind profile assumed here may not apply.
For the time being, the variation of the wind shear can be neglected.

6.5 Yaw misalignment angle

Ideally the wind turbine would operate without any yaw angle, that is, there is
no misalignment between the incoming wind direction and the rotation axis of
the rotor. However, due to the randomness of the wind, a certain misalignment
always exists. The influence of this yaw angle on extreme response is studied
here with angles from —30 degree to 30 degree.
The yaw angle changes the inflow condition due to the change in the tan-

gential components of the wind speed. In this case the negative yaw angles
increases the inflow angle and the angles of attack, the contribution of the drag
to the flap moment also increases. For a positive yaw angle, the drag force
is decreased, though the lift forces increase. Figure 6.3 shows the variation of
the response for different yaw angles. The mean value and the maximum of
the response are normalised with respect to the response with zero misalign-
ment. For this specific turbine, the negative yaw angle considerably increases
the blade response of the turbine, while at positive yaw angles the maximum
blade response remains almost unchanged. The support structure is less suscep-
tible to the misalignment and the response even decreases for positive angles.
In the simulation code DUWECS a continuous sinusoidal variation of the yaw
misalignment angle is implemented. Thus, this influence is partially taken into
account, although not in a stochastic way.

6.6 Significant wave height and wave period

The design practice of the offshore industry characterises the offshore environ-
ment with two parameters, significant wave height, Hs , and a characteristic
wave period, in this case the mean zero upcrossing period Tz. The two parame-
ters (Hs and Tz) are estimates of visual observations, measurements or hindcast
data. These parameters are usually represented in the form of a scatter dia-
gram, which contains the number of observations of the sea states, providing
the occurrence frequency of the sea states.
The Hs and Tz are not totally independent variables, this can be seen in the

scatter diagram (see Figure 3.1). In this case the interest lies in the variation
of the extreme response due to the variation of the significant wave heights and
wave periods. For this reason the influence of these two parameters on the
extreme response is studied without regarding the probability of occurrence of
the sea states. The hydrodynamic environment exerts little influence on the
rotor response. The maximum variation of the flap moment caused by the
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Figure 6.3: Variation of the response with respect to the misalignment of the
wind.

variation of the significant wave height and wave periods is less than 3%. The
little influence of the hydrodynamics parameters on the rotor has to do with
the fact that the rotor has relatively high natural frequencies compared to the
wave periods where the wave energy is concentrated.

In contrast to the rotor, the support structure perceives the change of the
significant wave height and wave period with the respective change in the re-
sponse. At low significant wave height the influences of the wave period is less
evident. With increasing wave height the influence of the wave period becomes
more visible. The maximum ratio of the response occurs at the maximum sig-
nificant wave height with a wave period, that is very close to the first natural
period of the support structure. The maximum increase of the response ratio
is about 15%. The response ratio is the ratio between the mean of the maxima
(of the flap moment or the OTM) with varying Hs and Tz and the mean of the
maxima from the reference load condition (see Table 6.1).

The influence of the wind load on the response of the support structure is
quite considerable, since the large increase of the significant wave height (from
0.75 up t0 6.75 m) leads only to a response increase of 15%. Remember that the
variation applies to the Hs and Tz and the mean wind speed remains 13 m/s.
On the other side, the period plays also an important role, because the response
ratio of the OTM increases rapidly in the neighbourhood of wave periods that
are close to the natural period of the support structure. The wave parameters
play an important role for the dynamic response of an OWT and can not be
neglected [23].
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6.7 Current speeds

The sea current interacts with the wave altering the water kinematics. Many
models exist to account for the interaction of waves and currents but the sim-
ple superposition method in which wave and current kinematics are computed
separately and added together in the Morison equation is often used. The pres-
ence of current contributes to the drag forces, but the contribution is rather
insignificant in the cases considered here. Both for the rotor and the support
structure. For this reason it is not necessary to take the current as a stochastic
parameter, unless the current speeds of the location have a much higher value
than the current speeds considered here.

6.8 Selection of stochastic variables

From the parameters studied, the variation of the maximum response within
the range of values specified in Table 6.1 are compared. It can be seen that for
the rotor, aerodynamic parameters prevail. For extreme load during the tur-
bine operation one can effectively disregard the hydrodynamic influences, while
turbulence intensity and the flow misalignment angle can have considerable in-
fluence on the extreme response. The problem that prevents these variables
being included in a probabilistic analysis is the lack of data. The hindcast data-
base does not contain information on the turbulence intensity. In case data
are available they can be incorporated in the probabilistic analysis, using the
methodology outlined in this thesis.
An alternative to a constant turbulence intensity is the formulation of tur-

bulence intensity that varies with the mean wind speed. This has been done for
onshore design code [53].The misalignment of the wind flow is partially taken
into account in the simulation code as a continuous sinusoidal variation of the
yaw misalignment angle.
For the support structure both the aerodynamic and hydrodynamic para-

meters are relevant. At relatively ‘calm’ sea states it is possible to neglect the
scatter of the significant wave height and the mean zero up-crossing period, since
their influence on the response is marginal. Considering the amount of simula-
tions and the stochastic modelling of the load environment, the mean wind speed
can be seen as the most important parameter, followed by the hydrodynamic
parameters Hs and Tz.
Other stochastic variables exist but they are not treated here. It is assumed

that the chosen parameters have greater influence on the response, though the
relevancy of the parameters can differ from location to location and from tur-
bine concept to turbine concept. For example, for non-rotationally symmetrical
structures the directionality of waves can affect the response characteristic. The
hydrodynamic coefficients are also subject to considerable fluctuations associ-
ated with marine growth etc. The spreading in the foundation properties can
change the dynamic behaviour of the wind turbine [103].
It has to be noticed that it is not always possible to have a statistical char-
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acterisation for uncertain parameters, due to lack of information. The emphasis
here is on the methodology, which remains the same with the inclusion of more
stochastic variables. At the present, the mean wind speed, the significant wave
height and the zero upcrossing wave period are considered as stochastic vari-
ables.



Chapter 7

Statistical analysis of the
extreme responses

7.1 Description of the General Methodology

This section describes globally how the distribution of the extreme response
from time domain simulations can be obtained. More details on the extreme
response distribution can be found in Chapter 8 and 9. Two different methods to
model the extremes are used. The MAX model, which only takes the maximum
of each time series into account and the POT (peaks over threshold) model,
which considers peaks over a certain threshold. These two methods fit the data
to different distribution functions.
A third method, the Process method is not included in this chapter because

the assumptions are different from the MAX and POTmethods. Different fitting
methods which can be applied to fit the distribution functions are given. The
influence of the different fitting methods on the distribution is studied
The response of every sea state is analysed separately to determine the condi-

tional distribution of the maximum response for that sea state. Every simulation
of the structural response to a random sea state is different. Thus, after car-
rying out a series of simulations, the conditional response distribution for that
sea state can be determined. This conditional distribution of the response for a
given set of sea state parameters is often termed a short-term distribution.
The sea states are associated with certain occurrence probabilities. In a

continuous description of the sea state occurrence probabilities, the CDF of the
extreme response for a random sea state is given as

F (m)rand om =

ZZZ
F (m|Ū ,Hs, Tz) · f(Ū ,Hs, Tz)dŪdHsdTz (7.1)

The conditional distributions of the response variable m is multiplied by
the joint probability density of the parameters Ū ,Hs and Tz and integrated
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over the possible variation of these parameters. In practice, the sea state has a
discrete description, thus, the conditional distributions are ‘weighted’ with the
occurrence probabilities of the corresponding sea state and the sum of all the
weighted contributions represents the distribution of the extreme response for
a random sea state. This distribution that takes into account the contribution
from different conditional distributions are also called the long-term distribu-
tion.
To extrapolate the response distribution to a longer period, one usually

assumes the independence of the sea states and then the distribution is simply
the distribution for a random sea state elevated to the power ofN , whereN is the
number of independent sea states in a period of, e.g.one year. The probability
of non-exceedence FN (m) for a maximum response m in N sea states is then
defined as

FN (m) = (F (m)rand om )
N (7.2)

In fact, the assumption that all the sea states are independent can lead to
a conservative estimate. To achieve the assumption of independence of events
different approaches can be applied. The approach applied to the support struc-
ture in the Opti-OWECS project was to model the storms as independent events
and then derive the distribution of the extreme response due to storms of ran-
dom occurrence. Such an approach may not be applicable to the rotor, since
normal operating conditions may induce more severe response to the rotor than
during the storms. However, it has been shown that the number of independent
sea states is less relevant if the response of interest corresponds to a large return
period, e.g. 50 year [100]. Because the extreme response increases only slowly
for large number of independent sea states N.
In case N is the number of sea states in one year, the distribution obtained

is a distribution that describes the cumulative distribution of the year maxima.
Often an extreme response is characterised by a return period T , this can be
defined as

T =
1

1− F1 year (7.3)

where F1 year is the cumulative distribution of the year maxima. For example if
F1 year = 0.99 then the return period is 100 years. By using the inverse of the
cumulative distribution of the year maxima one can obtain the extreme response
of the corresponding return period.
The long-term distribution of the determined extreme response is assumed

to completely describe the variations of the extreme response. The question now
is what is the chance that a structure will withstand the extreme loads to be
encountered during its service life. If the strength of the structure is considered
to be deterministic and a critical value of the strength can be determined, the
probability of failure is simply the probability that the response is higher than
the critical strength. In reality the strength of the structure is not deterministic,
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but for this problem, the only failure mode considered is the exceedence of the
yield stress.
The yield stress has a much narrower variation than the structural response,

so that the assumption of deterministic strength can be justified. However,
it depends on the type of problem; for example, for foundation analysis, the
uncertainty of the strength can be considerably larger than the variation of the
loads or responses. Again, this has to be put in perspective because for large
gravity base offshore structures, the local variations of the soil strength are more
or less averaged out over a large volume and in such cases the variability of the
loads becomes significant. For smaller foundations, this spatial averaging effect
will be less pronounced and the variation in the local soil strength becomes
important in a reliability analysis.
Of course, there are other extreme load situations that do not depend on the

external conditions only, such as an occurrence of faults. When a fault exists
in combination with unfavourable external conditions, extreme responses can
occur. The probability of such kind of events are largely unknown. A set of
extreme load cases that can occur during the service life are listed in the IEC
code[53] and the structure is expected to withstand these kinds of extreme loads.

7.2 Extreme value distribution
The commonly applied distribution models to fit the extreme response are briefly
described. The different types of extreme distributions correspond to different
types of parent distributions. The wind input is Gaussian but non-linearity of
the response and load models make the response non-Gaussian. However, if the
response is nearly Gaussian, the maxima of the response should belong to the
attraction domain of one of the theoretical extreme value distributions.
For distributions of the exponential type, asymptotic expressions exist for

the largest values. There are three extreme value distributions that describe
this domain of attraction. The Gumbel, the Fréchet and the reverse Weibull
distribution. The unifying description of these extreme value distributions is
given by [75] in the following parametrisation,

G0(x) = exp(− exp(−(x− u)/s)), γ = 0 (7.4)

Gγ(x) = exp

Ã
−
µ
1 + γ

x− u
s

¶−1
γ

!
, 1+γ(x−u)/s > 0, γ 6= 0. (7.5)

where u is a location parameter, s is a scale parameter and γ is a shape para-
meter. Equation 7.4 is the limiting form of the equation 7.5 for γ → 0. It can
be noticed that

• G0(x) is the Gumbel distribution (i.e. γ → 0)

• Gγ(x) is the Frechét distribution for γ > 0
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Figure 7.1: The three types of the extreme value distribution.

• Gγ(x) is the reverse Weibull distribution for γ < 0

For the Fréchet distribution there is a left end point equal to −s/γ+u. The
right end point for the reverse Weibull distribution is s/|γ| + u. Equation 7.5
can pose a problem for the extrapolation of the extreme responses if the shape
factor γ is negative. The existence of a right end point means that there is an
upper limit to the maximum response. The establishment of an upper limit to
the extreme flap moment or the overturning moment is difficult to be justified
physically with the limited simulation data. For this reason, GEV distribution
with a negative shape parameter is not used.
Figure 7.1 shows the three extreme value distributions, the shape parameters

for the Frechét and reverse Weibull distribution are 0.2 and -0.2 respectively.
The Gumbel distribution is a straight line on this scale, the reverse Weibull
has a curvature toward the right end point of the distribution. The Frechét
distribution has the heaviest tail of all the three distributions and is slightly
curved in this plotting scale.
As an alternative, one can force a positive shape factor of the GEV distrib-

ution by fitting the data to a Frechét distribution using an α parametrisation,
which can be written as

Gα(x) = exp

Ã
−
µ
x− u
s

¶−α!
, x ≥ u (7.6)

The Fréchet distribution has a heavier tail than the Gumbel distribution.
Another useful distribution which is used for the modelling of the smallest n
random variables is the three parameter Weibull distribution
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Gk(x) = 1− exp
Ã
−
µ
x− u
s

¶k!
, x ≥ u (7.7)

To differentiate it from the largest value distributions, k is used to denote
the shape factor instead of γ. This distribution has a left end point at x = u and
the tail of this distribution is less heavy than the Fréchet distribution. Other
suitable distributions that can be used to fit the extremes responses of an OWT
are: the Normal distribution, Gamma distribution, Rayleigh distribution etc.
For a list of the distributions used in this study see Appendix A.

7.3 Distribution of POT models
It has been shown [74] that the peaks over a certain threshold values follow
a Generalised Pareto distribution if the parent distribution belongs to the at-
traction domains of the Extreme Value distributions. Examples of such parent
distributions are the Normal, Gamma, and Exponential distributions etc. For
each of the Extreme Value distributions, there is a correspondence with one of
the POT distributions. The Generalised Pareto distribution has the following
parametrised form

Wγ = 1−
µ
1 + γ

x− u
s

¶−1
γ

for

 0 < x γ > 0
if

0 < x < 1/|γ| γ < 0

 (7.8)

W0 = 1− exp
µ
−x− u

s

¶
for γ = 0 (7.9)

u is the location parameter, s is the scale parameter and γ is the shape para-
meter. W0 is the limiting form of the Generalised Pareto distribution for γ = 0.
The correspondence with the Extreme value distribution can be seen clearly

• W0(x) is the Exponential distribution (i.e. γ → 0)

• Wγ(x) is the Pareto distribution for γ > 0

• Wγ(x) is the Beta distribution for γ < 0

Observe again that the Beta distribution has a right end point, thus, such
a distribution can not be used to extrapolate the extreme peak values, because
the existence of such boundary can not be determined using only limited data
from simulations.
The Pareto distribution offers an optimal fit if the parent distribution corre-

sponds to the attraction domain of the Fréchet distribution. The Exponential
distribution is a suitable distribution if the parent distribution belongs to the
attraction domain of the Gumbel distribution. One can see that the Exponential
distribution is the three parameter Weibull distribution with the shape parame-
ter γ = 1. Thus, the use of the three parameter Weibull distribution may offer
more advantage due to the extra flexibility of the shape parameter.
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7.3.1 Fitting of the data to the distribution model

There are different methods to fit the data to the distribution models presented
in the previous sections. Three methods are described here. These methods
are: the method of moments, the least squares fit and the maximum likelihood
estimate.
The method of moments
The method of moments consists of matching the statistical moments of

the data to the statistical moments of the distribution function. The Gumbel
distribution is taken here as an example. The Gumbel distribution has two
parameters. Hence, with the first two statistical moments, the distribution pa-
rameters can be determined. The expected value µx of the Gumbel distribution
is defined as

µx = u+ γe · s (7.10)

where γe is the Euler constant. The standard deviation σx is defined as

σx =
sπ
2
√
6

(7.11)

By matching the sample statistical moments to the statistical moment of
the distribution, one can determine the two distribution parameters u and s.
The Gumbel distribution is positively skewed and the skewness is independent
of the two distribution parameters. The skewness β of the Gumbel distribution
is 1.1396.
The reverse Weibull distribution is not considered because of the existence of

the right end point of the distribution. The existence of the statistical moments
of the Fréchet distribution depends on the shape factor α, the j-th moment
does exist if j < α. This makes the parameter estimation with the method of
moments unpractical, because the existence of the statistical moments is not
guaranteed.
Since the Gumbel distribution has a fixed skewness, it offers also less flex-

ibility to match the data skewness. The three parameter Weibull distribution
can be a suitable distribution. The first three statistical moments of the Weibull
distribution can be used to match the sample statistical moments. Solving the
three equations simultaneously one can obtain the estimates of the distribution
parameters. The moments of the Weibull distribution are [67]

µx = E[x] = u+ σ · Γ
µ
1 +

1

k

¶
(7.12)

σx = E[(x− µx)2] = σ ·
s
Γ

µ
1 +

2

k

¶
− Γ2

µ
1 +

1

k

¶
(7.13)

E[x3] =
3X

n=0

µ
3

n

¶
· u3−n · σn · Γ

³
1 +

n

k

´
(7.14)
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where Γ is the Gamma function. The solution of these three equations
are not as straightforward as for the Gumbel distribution, since it involves the
solution of nonlinear equations. These equations can be solved numerically.
The least squares method
The least squares method consists of finding a set of distribution parame-

ters that yields a minimum deviation between the distribution function and the
sample data. The measure used here is the square distance between the distrib-
ution function and the emprical distribution function. The empirical function is
obtained by ordering the data x such that xi+1 > xi. The empirical cumulative
probability F̂ , corresponding to xi is

F̂ (xi) =
ri

1 +N
(7.15)

where ri is the rank of the data point xi and N is the total number of data
points. If xi is the minum then ri = 1, conversely if xi is the maximum then
ri = N . Equation 7.15 is the so called Gumbel plotting position. There are
other plotting positions that can be used. For example, in conjunction with
the least squares fit and the Gumbel plotting position a small bias is introduced
when each data point is given an equal weightage [27]. Gringorten has suggested
a different plotting position [45] to remove the bias.
The distribution parameters θlsq determined by the least squares method

can be expressed as

θlsq = min{
X³

F (xi|θ)− F̂ (xi)
´2
} (7.16)

θ is the vector of the distribution parameters, F (xi|θ) is the conditional dis-
tribution function and F̂ (xi) is the empirical distribution. In many cases the
minimisation problem can be simplified through a transformation of the data.
For example, the Gumbel distribution has a double exponential form. Through

a double logarithmic transformation, the right hand side of the Gumbel distri-
bution will become a linear equation of the form Ax + B. The distribution
parameters can be derived from the coefficients of the linear equation. For
three parameter distributions the Equation 7.16 is solved using a non-linear
minimisation method.
Maximum Likelihood Estimate (MLE).
The third method employed here is the MLE. The essential element of this

method is the conditional density function f(xi|θ). The likelihood functionQ
f(xi|θ) is the product of the conditional density functions. The likelihood

function is a function of the distribution parameters. The maximum likelihood
estimate of the distribution parameters θmle is defined as

θmle = max
nY

f(xi|θ)
o

(7.17)

Basically, it is a selection criterion. The best distribution parameters are those
that correspond to the maximum of the likelihood function.
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In many cases the log-likelihood is used, since the product of the conditional
density would become a sum, which is easier for mathematical computations.
As with other numerical estimates, a local maximum can be computed instead
of the global maximum. For a good estimate of the the initial values for the
numerical iteration, one can compute the initial distribution parameters with
other methods such as the method of moments. Fortunately, this usually hap-
pens only for multi-modal data, which is not the case here.

7.3.2 Goodness of fit test

In order to judge how well the chosen distribution fits to the data, a goodness
of fit test is applied to the fitted distribution. There are many different tests
depending on the purpose of such a test. A graphical method is a simple method
of check. Usually the distribution function can be transformed in such way that
it can be written as a linear function in logarithmic scale. The sample CDF is
then plotted using this scale. The fitted distribution will appear as a straight
line. Depending on how the sample distribution deviates from this straight line,
one can accept or reject the fit.
A starting point of the hypothesis testing is a hypothesis about a certain

characteristic of the data called the null hypothesis. In this case, the null hy-
pothesis is concerned with the fact whether the distribution function fit the data
or not. The acceptance or rejection of the null hypothesis is determined in light
of the data. If there is a large difference between the data and the chosen dis-
tribution model, then the null hypothesis is rejected. The quantitative criterion
to reject the null hythothesis is given the goodness of fits test. Notice that a
failure to reject the null hypothesis is not the same thing as accepting the null
hypothesis.
For a less subjective judgement one can use the χ2 test. In this test, the

data are arranged into a discrete number of bins that span the interval. The
number of data points in each bin is then compared to the expected number of
data points predicted by the fitted distribution function. The expected number
can be obtained by integrating the CDF over the interval limits and multiplying
by the number of data. The χ2 test is in fact less subjective than the visual test
but it is not entirely objective either.
The outcome of the statistics depends on the number of bins and the size of

the bins. There are no universally accepted rules for choosing these parameters;
however, it is recommended to use equiprobable bin sizes (i.e. the probability
in each bin is the same) with the expected number in each interval being five or
more [61]. Since the number of data is not large (around 50), this would lead
to a large bin size. In all the subsequent tests, bins of equal size are used. The
χ2 statistics is defined as

χ2 =
kX
j=1

(Nj − npj)2
npj

(7.18)

where Nj is equal to the number of data points in the bin j, n is the total



7.3. DISTRIBUTION OF POT MODELS 65

number of the samples and pj is the probability density integrated between the
limits of the bin j. The χ2 is then checked against the critical value of the χ2

distribution for the given number of degrees of freedom and a significance level.
If the χ2 is lower than the critical value, then the null hypothesis is not rejected,
thus the chosen distribution with its distribution parameters can be considered
a probable fit.
Another category of test is based on the sample distribution function. The

deviation of the fitted distribution function is a measure for the goodness of fit.
A popular test in this category is the Kolmogorov-Smirnov test. It measures
the largest vertical difference between the sample distribution function and the
fitted distribution function:

D = sup
x
|Fn(x)− F (x)| (7.19)

where, Fn(x) is the sample distribution function. If the sample size is small then
the Kolmogorov-Smirnov test is to be preferred to the χ2 test. Another powerful
class of tests is the quadratic statistics, where the square of the deviation is taken
as a measure. The Cramer-von Mises test measures essentially the sum of the
square deviations and the Anderson-Darling statistics is a weighted sum of the
deviations, with more weight given to the tails of the distribution. Since the
goal here is to predict extreme responses, the tail of the distribution will play
an important role. For this reason the Anderson-Darling test is to be preferred
to the Cramer-von Mises test because of its ability to detect deviations in the
tails. The Anderson-Darling test can be written as

A2 = − 1
n

X
{(2i− 1) ln[F (xi)(1− F (xn−i+1))]}− n (7.20)

In this case the data are ordered in an ascending order, that is x1 < x2.....<
xn. The choice of test depends on which part of the distribution is more impor-
tant for the response estimate. A test that is good for measuring deviations of
the mean values may not detect deviations of the tail and vice versa. For more
details on the testing procedure see [28].
In many cases, the formalism of the test still can not replace a visual in-

spection of the data. A practical approach is to plot the data on different
probability papers and check if data appear as a straightline. The suitability of
the distribution models can then be confirmed by goodness of fit test.
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Chapter 8

MAX models

8.1 summary

The methodology described in this chapter is applied to the response of the
pitch regulated wind turbine, i.e. flap moment and the overturning moment.
The maximum of the response is extracted for each simulation. These values
are fitted to an extreme value distribution, which is a quite straightforward
approach. A disadvantage of this method is that many simulations are necessary,
since from each simulation only the maximum value is used.
In the first place, the influence of the number of simulations and of the length

of the simulations on the fitted distribution are investigated. It is necessary to
determine beforehand how many simulations are necessary and how long the
simulation length should be in order to achieve a reliable fit of the distribution.
In addition, a Bayesian analysis [13], that incorporates the uncertainties of the
choice of the distribution and of the distribution parameters into the estimate
of the extreme response, is applied. Furthermore, the variation of the estimates
of the extreme responses that are caused by different fitting methods and the
chosen parametric models are studied.
The study of simulation length and simulation number is applied to the

MAX model. The estimate of the extreme response from the MAX approach
will be used as a reference value for the estimates obtained using the POT and
Process models in the following two chapters.

8.2 Simulation number and simulation length

8.2.1 Study of the number of simulations for wind

Obviously the quality of the long-term estimate of the response depends on the
amount of information available. One can simulate, let’s say, 20 years and esti-
mate the extreme response distribution from, for example, the annual extremes
or monthly peaks over a certain threshold. The advantage of using the annual
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extremes is that they can be considered independent, although the amount of
data is still limited. Even with 20 year simulation data, there are only 20 data
points. For this reason, one can use other information of the data, such as peaks
over threshold or statistical moments etc.
Using simulations of a long period such as 20 years is not a practical ap-

proach because it would take a lot of simulation time even with today’s high
performance computers. Thus, the influence that the limited information exerts
on the estimates has to be analysed. The two variables analysed here are the
number of simulations and the length of simulations.
Using the MAX model the distribution of the extreme response during a

given sea state is determined. The question is how many simulations are needed
and how long the simulation should be. The expectation is that there will be a
limit where more simulations do not change the estimates of the extreme values,
or at least the extra information from simulations is marginal to justify the extra
computational effort.
To analyse the influence of the number of simulations on the statistical pa-

rameters, 100 simulations have been carried out. Hence, the population size
from which all the random drawings take place, is 100. The simulation length
is 10 minutes and the mean wind speed is 13 m/s. The turbulence intensity is
0.12 and the turbulence spectrum used is the von Karman spectrum1. From the
100 maxima, N samples are randomly drawn. This random drawing is repeated
many times. The sample size2 of the random drawing varies from 10 to 90.
Figure 8.1 shows the fluctuation of the mean value for 100 drawings with

different sample sizes N . From the 100 maxima obtained by time domain sim-
ulations, 10, 30 and 60 maxima are randomly drawn. The mean values of these
randomly drawn maxima (10, 30, 60) are calculated. The mean values are
normalised with the reference mean value of the 100 maxima obtained by sim-
ulations. The random drawing is repeated for 100 times (the horizontal axis).
It can be seen that the variability of the mean values is rather small. Even

with 10 maxima the variation of the mean value is no more than plus or minus
3 percent. Figure 8.2 shows the variation of the standard deviation for different
sample sizes. The variation of the standard deviation is much larger. The
samples are the same as those drawn for Figure 8.1. The standard deviation is
normalised with the reference standard deviation from the 100 maxima obtained
by simulations.
The variation can vary as much as plus or minus 50% from the reference

value. It is evident that the variation range of the mean value and the standard
deviation decreases with an increasing number of simulations
Figure 8.3 shows the variation of the mean values and of the standard devi-

ation of the randomly drawn maxima of different sizes N . To be more precise,
100 random drawings are performed. Each random drawing consists of N max-

1See also Table C.3 for the parameters of the time domain simulations. If they are not
explicitly mentioned, these parameters are used.

2 In this context, the sample size, the number of simulations and the number of maxima,
all of them refer to the number of randomly drawn maxima from a total population of 100
maxima obtained from simulations.
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Figure 8.1: Variation of the mean value of the randomly drawn maxima of the
flap moments with 3 different numbers of maxima, normalised with the mean
value from the 100 maxima.

ima with N varying from 10 to 90. The measure of variation of the mean values
is defined as the ratio between the standard deviations of the mean values of
the randomly drawn maxima and the mean value of the 100 maxima. The vari-
ation of the standard deviation is defined as the ratio between the standard
deviations of the standard deviations of the randomly drawn maxima and the
standard deviation of the 100 maxima (see also Table 8.1).
As mentioned before the variation of the mean values is very small compared

to the variation of the standard deviation. The decrease of the variation of the
standard deviation is nearly linear with the number of maxima. The standard
deviation of the mean values and the standard deviation of the standard devi-
ations are listed in Table 8.1. The variations of the mean values and standard
deviations approach zero since the random drawings are carried out without
replacement3.
The histogram of the 100 maxima obtained from simulations is plotted in

Figure 8.4 and a Normal probability density function is also shown. The fit is
obtained by fitting the sample CDF. The skewness of the 100 maxima is 0.2
and kurtosis is 3.47. The skewness and the kurtosis show that the extreme flap
moment has a slightly heavier distribution tail than the Normal distribution
and the upper tail is slightly larger than the lower tail.
From the variation of the statistical descriptors, it is difficult to judge how

3Without replacement means in this context that every random drawing consists of N
elements and these N elements are drawn without replacement. For the next random drawing
these N elements are returned to the population. This is in fact a variation of bootstrap.
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Figure 8.2: Variation of the standard deviations of the randomly drawn maxima
of the flap moments with 3 different numbers of maxima, normalised with the
standard deviation from the 100 maxima.

Table 8.1: variation of the mean and standard deviation of the maxima of the
flap moment with the number of simulations

number of simulations σµ
µref

in % σσ
σref

in %

10 0.99 21.2
20 0.59 15.8
30 0.47 12.5
40 0.33 10.6
50 0.28 7.5
60 0.23 6.6
70 0.20 4.5
80 0.14 4.4
90 0.10 2.2
σµ is the standard devia-
tion of the mean values of
the maxima

µref is the mean value
of 100 maxima

σσ is the standard devia-
tion of the standard devi-
ation of the maxima

σref is the standard
deviation of 100 max-
ima
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Figure 8.3: COV of the mean and of the standard deviation of the flap moment
maxima from randomly drawn samples for different sample sizes.

many simulations, i.e. maxima, are needed to enable a good estimate of the
distribution of the extreme response. For this reason the randomly drawn max-
ima are fitted to a 3 parameter Weibull distribution using the least squares
fitting method. The variation of the distribution parameters with the number
of maxima is analysed.
Cumulative distribution functions (CDF) are used to fit the sample CDF.

The disadvantage of fitting a CDF is that an over-smoothing effect is taking
place, so that details of the data distribution are lost, for example a multimodal
distribution can not be easily recognised in the sample CDF. In such case, one
can use histogram to visualise the details of the distribution.
The variation of the distribution parameters with the number of simulations

is non-Normal, thus, the standard deviation may not give a good picture of
the parameter fluctuation. Instead, the maximum range of the variation is
chosen as an alternative indicator, which gives the maximum and the minimum
variation of the distribution parameters. Furthermore, the 99 percentile of the
distribution of the extreme flap moment is also shown. Figure 8.5 shows the
variation of the distribution parameters and the 99 percentile of the distribution.
For all the distribution parameters, the boundaries of the 95% and 5 % of

the distribution are also given, assuming that the variation of the distribution
parameters follows a Normal distribution. This interval is much smaller than the
variation of the range defined by the maximum and the minimum of the fitted
distribution parameters. This may suggest that the range values are strongly
influenced by outliers. This is a by-product of the least squares fitting method.
The fitting of the 3 parameter Weibull distribution can produce uncommon
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Figure 8.4: Histogram of the maxima of the flap moments from 100 simulations.

parameter combinations. In such cases, the scaling parameter s can be larger
than the location parameter u. Thus, the interval bounded by the 95% and 5%
of the distribution gives a more realistic picture of the parameter variation than
the ranges.
The number of uncommon combinations of parameters decreases as the num-

ber of simulations increases. It can be seen that the range defined by the maxi-
mum and the minumum converges to the 95% and 5% boundaries. The variation
of the estimated response decreases rapidly till the simulation numbers reaches
50 and after that it decreases slowly. It can be assumed that if the number
of simulations is around 50, then the estimated distribution parameters do not
deviate significantly from the reference one. The 99 percentile of the distribu-
tion of the extreme flap moment confirms this trend. The reference distribution
parameters are the parameters estimated from 100 simulations. The variation
in the predicted extreme values can deviate considerably if the number of sim-
ulations used to fit the response distribution is low. With 50 simulations, the
maximum and the minimum of the 99 percentile of the distribution differ no
more than 15% from each other (see Figure 8.5, lower right).

8.2.2 Study of the number of simulations for waves

The overturning moment of the support structure is strongly influenced by the
wave loading. The number of simulations required for the fitting of the extreme
flap moment distribution is not necessarily applicable to the overturning mo-
ment. For this reason, the overturning moments are analysed here with the
same methodology as with the flap moment. 100 simulations have been carried
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out with a significant wave height of 6.9 m and a zero upcrossing period of 7.7
m/s. The choice of this set of wave parameters is based on the assumption that
the extreme response of the support structure without wind loading occurs in an
extreme sea state. Thus, the required number of simulations will be determined
by an extreme sea state and not a mild sea state.
Wind loading is not present in order to exclude the influence of the wind.

The simulation length is 10 minutes. Indeed, this length is not long enough for
wave simulations, however, it is assumed that the number of simulations and
the length of simulations can be determined separately. The issue concerning
the length of simulations is treated later in this chapter.
The overturning moment is treated with the same methodology as with the

flap moment. Random drawings are performed from the 100 OTM’s obtained
by time domain simulations. The sample size of the random drawings varies
from 10 to 90. For each sample size 50 random drawings are carried out. The
randomly drawn OTM’s are fitted to a 3 parameter Weibull distribution.
Figure 8.6 shows the variation of the 99 percentile of the OTM distribution

for different sample sizes, that is, the number of simulations used to fit the 3
parameter Weibull distribution. The vertical axis is normalised with the 99
percentile of the OTM distribution obtained using 100 simulations. As can
be observed, the variation of the 99 percentiles decreases with the number of
simulations. The mean estimates of the 99 percentiles lies consistently above
the reference 99 percentile and the minimum of the 99 percentile estimate varies
significantly less than the maximum of the 99 percentiles. It also means that
the chance is much bigger that a random estimate of the 99 percentile is more
likely to be above rather than below the reference value (from 100 simulations).
Using 50 simulations, the maximum and the minimum of the 99 percentiles

are between 1.21 and 0.95 of the reference 99 percentile. Further increase in the
simulation number has less impact on the reduction of the spreading of the 99
percentiles. Thus, 50 can also be regarded as a reasonable number of simulations
required to obtain a reliable fit of the OTM distribution. The variation of the
distribution parameters of the overturning moment (not shown here) is similar
to the variation of the distribution parameters of the flap moment shown in
Figure 8.5. The ranges of variations of the distribution parameters are much
larger than the ranges of variations of the 99 percentiles of the distribution.
Since the objective is to determine extreme responses of long return periods,
Figure 8.6 gives a better indication of the required number of simulations than
the variations of the distribution parameters.

8.2.3 Bootstrap of the simulation results

Flap moment:
The question, whether 100 simulations can be regarded as sufficient so that

the conclusion drawn from the previous section can be supported, can be raised.
First, the bootstrap method [35] is applied to investigate the variability of the
statistical parameters given 100 simulations. The main idea of bootstrap is that
the real distribution is unknown, but the empirical distribution from the 100
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Figure 8.6: Variations of the 99 percentiles of the overturning moment distrib-
ution with different number of simulations.

simulations is a good approximation of the true unknown distribution. Resam-
pling the empirical distribution one can have an idea of the intervals where the
true unknown statistical parameters are located.
The resampling of the empirical distribution is carried out by random draw-

ings. Data are randomly drawn from the original population (i.e. 100) and
returned to the population so that repeated values are possible (bootstrap with
replacement). The size of the sampled data is equal to the size of the original
data, i.e. 100 samples. This procedure is repeated 1000 times and the variability
of the distribution parameters is studied.
From Figure 8.7 it can be seen that the distributions of the parameters are

not Gaussian. The spreading is smaller than the standard deviation of the
Gaussian distribution. The 99 percent upper bound and the 1 percent lower
bound of the distribution are shown in Table 8.2. For every bootstrap sample
the 99 percentile of distribution is determined and its variation is illustrated in
Figure 8.7 (lower right).
The variation of the 99 percentiles is quite close to a Normal distribution

and the maximum and the minimum of the 99 percentiles differ about +/-5 %
from the mean estimate of the 99 percentile. Given other uncertainties that
influence the estimation of the extreme value, this variation can be regarded as
acceptable. Thus, it can be said that the variation of the distribution parameters
is not very significant from the ‘actual’ parameters.
The ultimate question of whether 100 simulations are sufficient to support

the conclusions drawn above can not be answered unambiguously. On the one
hand, one needs to know the true distribution, which remains unknown, in
order to judge the number of simulations required for a reliable estimate of
the response distribution. On the other hand, the aim of this analysis of the



76 CHAPTER 8. MAX MODELS

 

4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5 5.6
x 10

6

0

20

40

60

80

100

120

99 percentile of the distribution of the 
extreme flap moment  (Nm) 

nu
m

be
r o

f o
cc

ur
re

nc
e 
 

1 2 3 4 5 6 7
x 10

5

0

50

100

150

200

250

300

scale parameter s (Nm) 

nu
m

be
r o

f o
cc

ur
re

nc
e 
 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0 

50 

100

150

200

250

shape parameter k

nu
m

be
r o

f o
cc

ur
re

nc
e 
 

3.7 3 .8 3.9 4 4 .1 4.2 4.3

x  10 6

0

50

100

150

200

250

300

350

location parameter  u (Nm )

nu
m

be
r o

f o
cc

ur
re

nc
e

Figure 8.7: histogram of the variation of the distribution parameters (clock-
wise from upper left) u, s, k, and 99 percentile of the distribution from 1000
bootstraps



8.2. SIMULATION NUMBER AND SIMULATION LENGTH 77

0 50 100 150 200
0.9

1

1.1

1.2

1.3

1.4

1.5

maximum and minimum of the 99 percentiles
from 50 random drawings 

no
rm

al
is

ed
 9

9 
pe

rc
en

til
es

 o
f t

he
 d

is
tri

bu
tio

n

number of simulations 

mean estimate of the 99 percentile  

Figure 8.8: 99 percentile of the flap moment distribution obtained using different
numbers of simulations, normalised with the 99 percentile of the distribution
using 200 simulations.

simulation number is to reduce the simulation number instead of simulating for,
say, 100 years.
A theoretical justification is not investigated instead a practical criterion is

used here. The reasoning is that if 50 simulations are really sufficient then the
convergence of the estimates shown for a population size of 100 (see Figure 8.5)
will be observed also for larger population sizes. For this reason, the population
size is increased to 200 and the variation of the 99 percentile of the distribution
is studied for different numbers of simulations, varying from 10 to 190. For each
number of simulations 50 random drawings are carried out.
Figure 8.8 shows that with 50 simulations, the variation of the 99 percentile

is within 10% of the 99 percentile estimated using 200 simulations. With a popu-
lation size of 100 and 200 simulations, the convergence behaviour is very similar.
The spreading is sharply reduced until the number of simulations reaches 50.
Further increase in the number of simulations reduces the spreading but the rate
of reduction is rather slow and insufficient to justify the extra computational ef-
fort. Therefore one can assume that the choice of 50 simulations is independent
of the population size.
Overturning moment:
The same question posed for the flap moment applies also to the OTM.

Figure 8.9 shows the 99 percentiles of the OTM from 1000 bootstraps. The 99
percentiles are normalised with the 99 percentile obtained using the original 100
simulations. It can be seen that the maximum variations are 5% above and 5%
below the reference values. Thus, regarding the limited variation one can say
that the 100 simulations are representative and the 99 percentile obtained using
100 simulations is close to the actual unknown value of the 99 percentile.
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Figure 8.9: The histogram of the 99 percentile of the OTM distribution from
1000 bootstraps.

The variation of the distribution parameters of the OTM distribution ex-
hibits approximately the same behaviour as the variation of the distribution
parameters of the flap moment. The ranges of variations of the distribution
parameters of the OTM (not shown here) are much larger than those of the
flap moment (Figure 8.7). But as mentioned before, for this application the 99
percentile is a better indicator than the distribution parameters.

The question whether a conclusion drawn from 100 simulations is valid is
also raised for the overturning moments. The total number of simulations is
increased to 200 and random drawings are carried out with different sample
sizes, varying from 10 to 190. Figure 8.10 shows the variation of the 99 percentile
of the distribution with different numbers of simulations. The 99 percentiles are
normalised with the 99 percentilie obtained from 200 simulations.

As can be seen, the convergence behaviour is very similar whether 100 or 200
simulations are used as population size. The spreading decreased rapidly until
the number of simulations reaches 50. Above 50 the rate of the reduction of the
spreading is slow. In absolute terms, the variation of the 99 percentiles of the
OTM with the number of simulation is more significant than the flap moment.
With 50 simulations the maximum estimate from 50 random drawings is about
25% higher than the reference value and the minimum is about 6% lower than
the reference value. Thus, the chance of making an unconservative estimate is
lower because the chance that the 99 percentile estimated from 50 simulations
will be higher than the reference value from 200 simulations is bigger. Therefore
one can assume that the choice of 50 simulations is a reasonable choice.
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Figure 8.10: 99 percentile of the overturning moment distribution obtained
using different numbers of simulations, normalised with the 99 percentile of the
distribution using 200 simulations.

8.2.4 Correlation of the distribution parameters

As can be seen in Table 8.2, the shape and scale parameters of the maximum
flap moment distribution can have large variations. However, the effect on the
99 percentile of the distribution is rather small compared to the magnitude
of variation of the distribution parameters. The large variation of the scale
parameter and the shape parameter can be explained by the correlation of these
two parameters. The 3 parameter Weibull distribution can be written in a
general form, defining the normalised variable x̃ = (x− u)/s, then the Weibull
distribution of the response for one random sea state becomes

F (x̃) = 1− exp(−x̃k) (8.1)

For the distribution of the one year extreme response, one can assume that
all the sea states are independent and the one year distribution of the extreme
response can be calculated using the extrapolation formula, where N is the
number of independent sea states. Thus, F (x̃)1year = F (x̃)N . Taking this into
account and using Equation 8.1, one can write the inverse of the CDF as

x̃ =
h
− ln

³
1− N

p
F1year

´i 1
k

(8.2)

x̃ can be interpreted as a ‘gust’ factor which expresses the extreme value with
a certain exceedence probability in term of the scale parameter s (since x =
u + sx̃). Figure 8.11 shows the variation of this ‘gust’ factor for different time
periods T in years and for different shape factors k. It is simply assumed that
all the sea states are independent and the sea state duration is 3 hours, thus T
can be easily converted to N .
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Table 8.2: variation of the distribution parameters and fractile values
Lower bound Upper bound up−low

median
(Flow = 0.01) (Fup = 0.99)

u location factor 3.88 · 106 4.16 · 106 0.07
s scale factor 0.18 · 106 0.48 · 106 1.27
k shape factor 1.37 3.41 1.15
99 percentile 4.81 · 106 5.39 · 106 0.11
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Figure 8.11: variation of the gust factor (see Equation 8.2)with the shape factor
k and number of years for the distribution of the maximum flap moment.

As can be seen, the larger the shape factor, the faster it converges to an
upper limit value. The three shape factors shown here are the 1 percent lower
bound, the median, and the 99 percent upper bound values from the variation
computed with the bootstrap (Figure 8.7).
From Figure 8.11 it can be seen that the ‘gust’ factor can have a large

range of variation. However, this scale of variation is not translated to the 99
percentile of the extreme flap moment. From the three distribution parameters,
only the location parameter u has a limited variation range. The scale and
shape parameter can have very large variations. However, the tail values of the
extreme distribution that were shown here have a reasonably limited variation.
This can be attributed to the fact that the scale factors and shape factors do
have a certain correlation. Figure 8.12 shows the scatter plot of the scale factor
and the shape factor obtained from fitting of the bootstrap samples.
From Figure 8.12 it can be seen that the scale factor and shape factor are

positively correlated. The linear correlation coefficient is in the order of 0.9. For
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Figure 8.12: correlation of the shape parameter k with scale parameter s of the
distribution of the maximum flap moment.

larger scale factors, which means larger standard deviation, the shape factor is
also large. A large shape factor means a smaller ‘gust’ factor, thus the variation
of the product x̃s is smaller than the individual variation of x̃ or s. There may
not be a physical reason for that but rather a by-product of the fitting procedure.
The three parameter Weibull distribution has more degrees of freedom than, for
example, the Rayleigh distribution, but the choice of the scale factor and shape
factor is not totally independent of each other.
Another plot that illustrates the influence of the randomness of the extreme

response is Figure 8.13, which shows the scatter plot of the maximum wind
speed with the maximum flap moment in each simulation. The peak gust speed
is uncorrelated with the peak flap moment, due to the stochastic properties of
the wind. On the other hand, there can be other properties of the stochastic
wind that are more influential on the extreme response, such as the acceleration
of the wind, which can produce wind gusts of very small rise time. For this
reason, deterministic models that take the maximum wind speed as the wind
load parameter can have a very different estimate of the extreme flap moment
than the MAX method.

8.2.5 Study of the wind simulation length

In this section the influence of the wind simulation length on the extreme blade
response is analysed. For this purpose a large number of 10 minutes simulations
have been carried out. The external conditions for the simulation are the same
as the external conditions used in the analysis of the number of simulations. The
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Figure 8.13: Correlation of the peak gust speed with the peak flap moment.

10 minutes simulations are grouped to represent simulations of longer length.
The simulation length can vary from 10 minutes to 1 hour since the stationary
period of the wind is assumed to be somewhere between 10 minutes to 1 hour.
The reason for the grouping is that the simulation method of wind (and waves)
used here requires a spectral discretisation and the spectral discretisation de-
pends on the length of the simulation. A longer simulation length means a finer
discretisation of the spectrum. For this reason only 10 minutes simulations are
used to ensure uniform discretisation for all the simulation lengths, so that the
extreme responses of different simulation lengths can be compared.
The maxima are selected from the grouped simulations. The number of

maxima for all the simulation lengths is 50, which is the number suggested by
the analysis of the previous section. These maxima are fitted to a 3 parameter
Weibull distribution. The variation of the distribution parameters is depicted in
Figure 8.14. The distribution parameters are normalised with the mean value
of the distribution parameters from the 1 hour simulations. To quantify the
variation of the distribution parameters within a given simulation length, the
simulations are randomly grouped and the distribution parameters are then de-
termined. This random regrouping and parameter estimation are performed
50 times for each simulation length. The standard deviations of the parameter
variation are obtained for each simulation length. The variation of the distri-
bution parameters for a given simulation length is shown with error bars of 1
standard deviation.
As can be seen from Figure 8.14, the variation of the parameters decreases

with the increasing simulation length. The variation of the location parameter is
limited in relation to the 1 hour estimate, while the scale and shape parameters
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Figure 8.14: Weibull distribution parameters and the 99 percentiles of the dis-
tribution of the maximum flap moment for different simulation lengths of wind;
error bars show one standard deviation.

can have larger fluctuations. The values of the location parameter increase with
the simulation length. The reason is that the longer the simulation length the
narrower the distribution, because only the largest values are included in the
distribution. The large variation of the scale and shape parameter does not
result in a large variation of the 99 percentiles (see Figure 8.14, lower right) of
the distribution, which is due to the correlation of these two parameters.

From the given result one can say that with 40 minutes as simulation length,
an optimal reduction of the spreading of the estimate is achieved, at the same
time further increase of the simulation length does not have substantial effects
on the estimate of the 99 percentiles. Moreover, the 1 standard deviations of
the 99 percentile of the distribution for all the different simulation lengths does
not exceed 10% of the 99 percentile of the 1 hour estimate. From a practical
point of view, one can say that for the estimate of extreme blade responses, 40
minutes wind simulation would be sufficient.



84 CHAPTER 8. MAX MODELS

20 4 0 60  8 0 10 0 1 20 1 40 160 1 80

0.9

0 .95

1

s imulat io n le ng th (minutes ) 

no
rm

al
is

ed
 9

9 
pe

rc
en

til
e 

of
 th

e 
di

st
rib

ut
io

n 
of

 th
e 

m
ax

im
um

 O
TM

 

 2 0 4 0  6 0 8 0  1 00 120 1 4 0 1 60 18 0  
0 .5

1

1 .5

2

2 .5

3

3 .5

s im ulatio n le ng th (min ute s) 

no
rm

al
is

ed
 s

ha
pe

 p
ar

am
et

er
 k

 o
f t

he
 d

ist
rib

ut
io

n 

 2 0 4 0  6 0 8 0  1 00 120 1 4 0 1 60 18 0  
0 .5

0 .6

0 .7

0 .8

0 .9

1

1 .1

1 .2

no
rm

al
is

ed
 lo

ca
tio

n 
pa

ra
m

et
er

 u
 o

f t
he

 d
is

tri
bu

tio
n 

s im u latio n le ng th (m inute s )  2 0 4 0 6 0 8 0  1 00 1 20 1 4 0 1 60 1 8 0  
0

1

2

3

4

5

s im ulatio n le ng th (min ute s ) 

no
rm

al
is

ed
 s

ca
le

 p
ar

am
et

er
 s

 o
f t

he
 d

ist
rib

ut
io

n 

Figure 8.15: Weibull distribution parameters and the 99 percentiles of the OTM
maxima for different simulation lengths of the waves; shown with error bars of
one standard deviation.

8.2.6 Study of the wave simulation length

The requirement for the wave simulation length can be rather different from the
wind simulation length. The stationary period of waves can vary from 1 to 6
hours. For the design of offshore structures a stationary period of 3 hours is
commonly used. The influence of the wave simulation length on the extreme
response of the support structure is analysed in a similar manner as the influence
of the wind simulation length on the blade response. In this case 900 simulations
with a length of 10 minutes were performed. The 10 minute responses are then
grouped to represent simulations of different lengths. Again, random grouping
is made to study the variability of the statistical parameters within different
simulation lengths. From the random groupings the standard deviations are
obtained for each simulation length.
The overturning moment of the support structure is taken as the response

indicator. The studied simulation lengths range from 10 minutes to 3 hours. The
number of simulations is 50. There is no wind input, so that an interference
of the two stochastic processes is excluded. The sea state parameters used here
are, a significant wave heigt of 6.9 m and a zero upcrossing period of 7.7 s.
The maxima from the grouped responses are fitted to a 3 parameter Weibull
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distribution and the variation of the distribution parameters is shown in Figure
8.15. The distribution parameters are normalised with the reference values
obtained from 3 hours simulation length. From the results shown, it can be seen
that the distribution parameters converge rapidly towards the end value. This
is observed for simulation lengths up to 80 minutes. Then the convergence rate
decreases, approaching slowly the reference value. Judging from the fluctuation
of the distribution parameters, one could have expected that the 99 percentiles of
the distribution would have larger variations. The 99 percentiles in Figure 8.15
(lower right) shows in fact a much more limited variation than the distribution
parameters. This has already been observed for the study of the wind simulation
length. It can also be noticed that the convergence of the 99 percentiles is much
slower than the convergence of the distribution parameters, although the relative
variation with respect to the reference value is considerably smaller.
The 99 percentiles increase with the simulation length. Roughly one can dis-

tinguish two linear trends. From 10 to 40 minutes the slope of the curve suggests
a more rapid increase of the 99 percentile estimates than from 50 minutes to
3 hours. From a practical point of view one would choose a shorter simulation
length because of the computational time. In this case 40 minutes would be
a compromise between computational effort and accuracy. With a simulation
length of 40 minutes, 90% of the estimates of the 99 percentiles will differ no
more than 10% of the mean estimate of the 99 percentiles. Hence, this can be
seen as an acceptable deviation

8.2.7 Selection of a number of simulations and a simula-
tion length

The choice of the number of simulations can be made based on the analysis in
the previous sections. It has been shown that 50 can give a satisfactory estimate
of the response distributions. However, in absolute terms the error incurred in
using a limited number of simulations is bigger for the overturning moment
than for the flap moment. Partly, because the length of the stationary period
for waves is longer and in that analysis only 10 minute simulations are used.
Nevertheless, both the flap moment and the overturning moment show a rapid
convergence with 50 simulations, further increase in the number of simulations
has less significant improvement on the estimate.
It is more difficult to choose the length of the wave simulation because the

convergence of the OTM distribution is not manifested in such way that a clear
limit can be established as with the number of simulations. There is always
a trade-off between computation time and degree of accuracy. For this reason
one can justify the choice of 40 minutes as simulation length because of the
convergence rate and the fact that the mean estimate of the overturning moment
is only 5 % below the 3 hour estimate.
For the wind simulations, 40 minutes is also an ideal length regarding the

convergence of the 99 percentile of the flap moment distribution. With 40
minutes simulation, the mean estimate of the 99 percentiles is less than 1%
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below that of 1 hour. For combined simulations of wind and wave 40 minutes
simulation is recommended.
Moreover, the simulation length will depends on other factors such as the

relative contribution of the wind and wave loads to the total response or the
local wind and wave climate. For the pitch regulated turbine considered here,
the wind load is dominant for the extreme response, hence performing a longer
wave load simulation would not affect the estimate of the extreme response
significantly.

8.3 Statistical uncertainties

8.3.1 Bayesian analysis of the uncertainties

The estimate of the extreme response beyond the data length is loaded with un-
certainties. There are many types of uncertainties present in the whole process
of response estimation. In this context only the statistical uncertainties that
arise from fitting of the parametric models, such as uncertainties of the dis-
tribution, parameters of the distributions are considered. The influence of the
uncertainties can be taken into account using a Bayesian analysis [13]. The
influence of the fitting methods on the parameter estimation is also studied.
The results of the simulations are subject to a statistical analysis. The

uncertainties that are associated with the statistical analysis are: the choice
of the distribution type and the parameters of the distribution. The choice of
the distribution can not be determined unambiguously in most cases, thus a
subjective choice has to be made. The uncertainties concerning the parameters
of the distribution can then be considered using the Bayesian analysis. The core
of the Bayesian analysis is the Bayes theorem [94]

P (A|B) = P (B|A) · P (A)
P (B)

(8.3)

where P (A|B) denotes the conditional probability of A given B. The subjec-
tivity of the Bayesian analysis lies in the term P (A) which represents the prior
probability of the parameters. The P (A|B) is the so called posterior probability.
The choice of the prior probability can be rather arbitrary. It is usually based
on a subjective judgement about the character of the distribution (through ex-
perience, expert opinions etc.). However, in engineering problems the likelihood
function usually dominates, thus the subjective prior probability will have less
relevance on the posterior probability. In an engineering approach where the
decision making process can not always be based on an objective judgement
because of lack of information, Bayesian analysis is a useful tool to include
statistical uncertainties.
As an illustration of the method, the Bayesian analysis is applied to 50

maxima of the flap moment of the blade, obtained from 50 simulations of 10
minutes. The maxima of the flap moment are fitted to a 3 parameter Weibull
distribution. The Bayesian theorem can be written as
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f 00(θ) =C ·Q f(xi|θ) · f 0(θ) (8.4)

f 00 is the posterior and f 0 is the prior probability density of the Weibull
distribution parameters. θ represents the vector of the distribution parameters
and C is a normalisation factor to be determined.

Q
f(xi|θ) is the so called

data likelihood function and xi are the data obtained by simulations, e.g. max-
imum flap moments. The data likelihood function is also used to determine the
distribution parameters in the maximum likelihood estimate, see Equation 7.17

θmle determines the maximum likelihood estimate (MLE) of the distribution
parameters, where the likelihood function has a maximum. In the case of a 3
parameter Weibull distribution, a three dimensional probability density function
of the distribution parameters is obtained and the hyper-volume of the function
is normalised to unity by the constant C .
The uncertainties of the distribution parameters can be taken into account

through the total probability theorem,

F (x) =

ZZZ
F (x|θ)f 00(θ)dθ (8.5)

F (x|θ) is in this case the conditional distribution of the peak flap moment
given a set of distribution parameters.
In the same manner that the uncertainties of the parameters are dealt with,

the Bayesian analysis can be applied to the uncertainties of the choice of distrib-
ution models. Instead of the continuous density distribution of the parameters,
a prior set of weighting factors for different types of distributions is given.

f 00(Fi) =C · f(xi|Fi) · f 0(Fi) (8.6)

Fi represents the different distribution types taken into consideration. The
term f(xi|Fi) is calculated using the following integral [91]

f(xi|Fi) = Ki =

Z
fi(xi|θ)f 0(θ)dθ (8.7)

There is no information available that indicates a certain distribution is
more likely than the others. Hence, a uniform prior is used, the prior weights of
the distributions, f 0(Fi), are equally divided among the distributions. In this
case the normalisation factor is simply C = 1P

i
f 0(Fi)·Ki

. Using Equation 8.6 the

posterior weighting factors for the different distributions functions are obtained.
The posterior weighting factors are taken into account analogously as described
in Equation 8.5, where the summation sign replaces the integration sign.

F (x) =
X
i

F (x|Fi)f 00(Fi) (8.8)

Notice that Equation 8.5 takes into account all the possible variations of the
distribution parameters while Equation 8.8 can only take a finite number of dis-
tribution functions into account. This implies also that the end result strongly
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depends on the selection of the distribution functions. Thus, one should make
visualisations of the simulation data in a probability scale, e.g. Normal plot,
Weibull plot, to verify that the chosen distributions provide a good coverage of
the data in the probability space.

8.3.2 Uncertainties of the distribution parameters

In this section the uncertainties of the distribution parameters are examined.
The Bayesian analysis is applied to treat the uncertainties of the distribution
parameters. The distribution functions used here are, 3 parameter Weibull,
Gumbel and Normal distribution. These 3 CDF’s are used to model the maxima
of the flap moment. The maxima are obtained from 50 simulations of a 40
minutes length. The mean wind speed is 15 m/s4.
First the data likelihood function defined in the Equation 7.17 is obtained.

The 3 parameter Weibull distribution has a data likelihood that is a function
of three variables. Figure 8.16 shows the data likelihood function for different
combinations of the three parameters (that is, one parameter is held as con-
stant). In principle, one needs to integrate the data likelihood function over all
the possible parameter values. However, the likelihood function decays rapidly
towards zero, hence for numerical integrations only a limited region needs to be
considered.
The slight dependency between the two parameters s and k can be seen by

following the maximum of the likelihood function for a given location parameter
u (Figure 8.16 top left). It seems rather symmetrical along a constant value of s
and k but actually the symmetrical axis is slightly oblique. A larger scale factor
s corresponds to a larger shape factor k and vice versa. For constant k and s
there is also a slight symmetry between the two parameters. As can be seen the
shape factor and the scale factor decrease for increasing location factor.
The posterior distribution of the distribution parameters needs to be deter-

mined. In this case a constant distribution of the prior, a non-informative prior,
is assumed. The posterior probability density of the parameters is proportional
to the data likelihood function with a constant normalisation factor C. Using
the total probability theorem (Equation 8.5), the distribution of the extreme
flap response that includes the uncertainties of the distribution parameters can
be obtained. After the distribution of the maximum flap moment is determined,
the fractile values that are relevant for the structural design can be calculated.
In this case, the extreme flap moment with a return period of 100 years can be
determined.
To avoid the triple integration, the integral of Equation 8.5 is split in a

double and a single integral. First the data likelihood function is integrated
over the s and k domain, which gives the marginal distribution of the location
parameter u.

4The choice of the mean wind speed of 15 m/s is that at this mean wind speed, the most
severe response of the pitch regulated wind turbine is expected, this is shown later in Section
11.2.
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Figure 8.16: data likelihood functions of the maximum flap moment, at a mean
wind speed of 15 m/s, with 50 maxima obtained from simulations, fitted with
a 3 parameter Weibull distribution. upper left: k is constant; lower left: u is
constant; lower right: s is constant.
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Figure 8.17: The marginal probability density of the location factor u of the
distribution of the maximum flap moment.

Then, the Equation 8.5 is integrated over the domain of s and k. This yields
the conditional probability density function (or the conditional quantile) that
depends on the location factor u (Figure 8.18). Applying the total probability
theorem again to the conditional quantile with the marginal distribution of the
location parameter (Figure 8.17), the quantile value that takes into account the
uncertainties of all the distribution parameters is obtained.
For the Weibull distribution the variation of the scale parameterand shape

parameter has a larger impact on the estimate of the extreme response than
the location parameter. While the location parameter u varies linearly with the
physical variable (x = u+ sx̃), the shape parameter k and the scale parameter
s vary as a product (see Equation 8.2). Treating the location parameter u as a
variable or a constant (estimated with MLE), the difference in the 99 percentiles
of the distribution of the flap moment is less than one percent.
The same procedure that is applied to the Weibull distribution parameters

is applied to the Gumbel and Normal distribution parameters. The quantile
values that are representative for the extreme response with a 100 year return
period are obtained5. The results are shown in Table 8.3
Clearly the spreading of the parameters does not have very strong effects on

the estimate of the extreme response. The difference is no more than 2% for
all the distributions. This leads to the assumption that the uncertainties of the
distribution parameters do not considerably affect the estimate of the extreme
flap response.
The effect of including the parameter uncertainties can be best explained

with an example of a Normal distribution. Assuming that the data follow a

5The 100 year extreme response is obtained by considering only one conditional distribution
and not all the conditional distributions. This simplification is done for the illustration of the
Bayesian analysis.
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Figure 8.18: 100 year flap moment conditioned on the location factor u.

Table 8.3: 100 year return values with parameter uncertainties and without

Distribution function Bayesian estimate least squares estimate
Weibull 5.57·106Nm 5.62·106Nm
Gumbel 6.21·106Nm 6.13·106Nm
Normal 5.45·106Nm 5.43·106Nm

Normal distribution with the mean µx and the standard deviation σx. The
uncertainty in the distribution parameter µx can be quantified with a prior
that is also a Normal distribution with the mean µµ and standard deviation σµ
(both the mean and the standard deviation are known). It has been shown that
if a non-informative prior is used, i.e.σµ À σx, then the distribution after the
Bayesian analysis will assume the sample mean value and the increase of the
standard deviation is σx

p
(1 + 1/n), with n as the number of data [94]. For a

sample size of 50, the increase of the standard deviation is less than 1%. In case
the standard deviation is also unknown, then the Student-t distribution is used
to define the variation of the mean. In this case, the uncertainty increases only
slightly compared to the case of known standard deviation, assuming n = 50.
As can be seen, a non-informative prior does not increase the estimate of the
extreme response in a significant way when the likelihood function is dominant.
This is usually the case when the number of data is sufficiently high.

However, one should keep in mind that the synthetic data set from simula-
tions may present less variability than the real distribution (e.g. measurements).
In that case the variability of the distribution of the extreme response maybe
more significant.
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8.3.3 Uncertainties of the choice of distribution

Different distribution models

The choice of distribution models is surrounded by subjective decisions. How-
ever, there are different diagnostical tools to distinguish those more likely ones
from those less likely ones. But even these diagnostics are not always free of sub-
jective elements. Before proceeding to the choice of the distribution function,
one can have some statistical description of the data. Such statistical descriptors
can be the mean, median, variance, skewness etc. This gives a general picture
of the data. Here, a data set consisting of 50 maxima taken from 50 simulations
of 10 minutes is used. The maxima are the extreme flap moment at the blade
root and the different statistical descriptors are shown in Table 8.4.
One can see from Table 8.4 that the data has a coefficient of variation (i.e.,

the standard deviation divided by the mean value) and it is positively skewed.
The kurtosis is less than 3 (Normal distribution), which may indicate a less
fatter tail than the Gaussian distribution. First, it is fitted to 4 different distri-
bution functions, the Normal distribution, the Gumbel distribution, the Frechét
distribution and the Weibull distribution. The data are fitted with the least
squares method. The data are also fitted to the Generalised Extreme Value
(GEV) distribution. The fit yields a reverse Weibull distribution and this dis-
tribution is associated with a right end point. Considering that the response
distribution will be extrapolated to a much longer period, this would present a
serious limitation for the application. For this reason the GEV fit is discarded.
The test for the goodness of fit [28] is carried out for all the four distributions

using the χ2 test. For the present sample size of 50 data points, a bin size that
is about σ/3 is chosen, where σ is the sample standard deviation. With a
significance level of 5%, the null hypothesis can not be rejected for all the 4
distributions. However, as mentioned before, the bin size is a critical parameter
for the χ2 test. In case a larger bin size is chosen the test result can lead to the
rejection of the null hypothesis for some of the distributions. There is also a
recommendation about choosing the bin size in such way that at least 5 samples
will fall into a bin or one can group the bins if the number of samples in the bin
is too small.
Tests based on the empirical distribution function are also applied, the

Kolmogorov-Smirnov (K-S) test and Anderson-Darling test (A-D). K-S test is
recommended if the sample size is small. It measures the absolute deviation of
the fitted distribution from the sample distribution. The A-D test measures the
quadratic deviation of the fitted distribution to the sample distribution, with
higher weighting factor for the tails.
According to the K-S and A-D tests, the null hypothesis can not be rejected

for the chosen distribution functions. Figure 8.19 shows the empirical distrib-
ution function with fits of different parametric models using least squares fits.
The Gumbel fit and the Frechét fit are almost identical, because the shape factor
for the Frechét distribution is in the order of 108 and the Frechét distribution
converges to a Gumbel distribution if the shape factor α → ∞. For this rea-
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Figure 8.19: Maxima of the flap moment of the pitch regulated turbine from 50
simulations fitted to different distribution functions.

son there is no need to consider both distributions. Henceforth, the Gumbel
distribution is used in place of Frechét.
It can be seen that the Gumbel distribution has the heaviest tail followed

by the Weibull and Normal distribution. In this case a visual inspection is also
carried out by plotting the data in the corresponding probability scales. Figure
8.20 shows the data plotted in a Normal, Weibull and Gumbel probability scale.
It can be seen that the Normal and Weibull distribution have a poor fit of
the lower tail of the data, while the Gumbel distribution may overestimate the
upper tail. However, it is not easy to choose one of the distributions based on
the visual inspection. Instead, the statistical descriptors of the distributions are
compared to the statistical descriptors of the data. The mean and standard
deviation of the Normal distribution are identical to the samples mean and
standard deviation. The rest can be calculated from the distribution functions.
Table 8.4 shows the first four descriptors of the distribution functions.
From Table 8.4 it can be seen that the mean and standard deviation are

well approximated by all the distribution functions. The difference lies in the
skewness and the kurtosis. The data suggest a slight positive skewness and a
kurtosis that is below the kurtosis of the Normal distribution (i.e. 3). The
Gumbel distribution has a positive skewness which is independent of the scale
and location parameter. Since this skewness and kurtosis are much larger than
the sample skewness, it can be expected that it will yield also a higher estimate.
The Weibull distribution is a more flexible model, which can adjust the skewed
sample data without producing a much heavier tail, due to the extra freedom
of the shape parameter. The Normal distribution is also acceptable considering
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Figure 8.20: Maxima of the flap moments of the pitch regulated turbine plotted
in three probability papers; for Gumbel probability plot, not the cumulative
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Table 8.4: statistical descriptors of the sample data and distribution functions
of the maxima of the flap moment

Sample Weibull Gumbel Normal
mean 4.81·106Nm 4.82·106Nm 4.81·106Nm 4.81·106Nm
standard dev. 0.15·106Nm 0.15·106Nm 0.17·106Nm 0.15·106Nm
skewness 0.22 0.69 1.13 0
kurtosis 2.58 3.2 5.4 3

Table 8.5: participation factors and fractile values of the distribution functions
of the maxima of the flap moment in a Bayesian analysis
Distribution participation 99% 100 year
Gumbel 14.6% 5.36·106Nm 6.13·106Nm
Normal 0.8% 5.28·106Nm 5.61·106Nm
Weibull 84.6% 5.25·106Nm 5.62·106Nm
Bayesian combination 5.26·106Nm 5.93·106Nm

the light tail of the sample data.

Bayesian analysis of the distribution choice

After the goodness of fit tests and comparison of the statistical moments, the
choice of an appropriate distribution function still can not be made with cer-
tainty. One can evoke the Bayesian analysis to take the uncertainties into ac-
count. Using the procedure described in the previous section one can take the
uncertainty of the distribution choice into account, in a semi-empirical way. The
3 distributions that have been tested before are chosen. The sample data are
the maxima of the flap moment taken from 50 simulations with a mean wind
speed of 15 m/s.
Table 8.5 shows the 99 percentiles of the distributions of the maximum flap

moment for different distribution functions. It also shows the posterior probabil-
ities of the distribution functions in percentage of the participation in the final
distribution. The final result of a Bayesian analysis is a distribution composed
of the chosen distributions with the corresponding participation factors. There
is a distinct dominance of the Weibull distribution. Even though the Normal
distribution gives very close estimates of the 99 percentile, slightly above the
Weibull estimate, the contribution of the Normal distribution is insignificant.
The difference between the 99 percentile estimates is less than 4%, with respect
to the Weibull estimate. The difference between the different distribution mod-
els becomes larger when the estimates are extrapolated to a return period of
100 years.
Figure 8.21 shows the tail behavior of the different distributions. It can be

seen that the Gumbel distribution gives the highest estimates due to the heavy
tail. Weibull distribution and the Normal distribution have an overlapping tail
for high fractiles up to 0.99999 (i.e. 10−5 in the logarithmic scale), then the
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Figure 8.21: Cumulative probability of the extreme flap moment with different
distribution models, the mean wind speed is 15 m/s.

tails diverge. The Normal distribution is the one with the lightest tail. Figure
8.21 also shows the Bayesian estimate of the distribution of the extreme flap
moment. The Bayesian estimate of the 99 percentile of the flap moment is very
close to the Weibull and Normal estimate. Further into the tail, the influence
of the Gumbel distribution increases.
Table 8.5 shows the estimates of the extreme flap moment with a return

period of 100 years. The difference between the distributions in the flap moment
with a return period of 100 years increases considerably. The 100 year flap
moment increases by 14% with respect to the 99 percentile for the Gumbel
distribution, while for the Weibull and Normal distribution, this increase is
about 7%. As can be seen the Bayesian analysis yields an estimate that is close
to the average between the Weibull and Gumbel estimates. That means that
at the tail region the influence of the Gumbel distribution increases eventhough
the Bayesian factor remains the same.
It has to be said that there are two different manners of carrying out the

extrapolation. One can apply the Bayesian factors either before or after the
extrapolation. If the Bayesian factors are applied before the extrapolation,
the 100 year estimate is higher than applying the Bayesian factors after the
extrapolation. The extrapolation process favours the tail of the distribution,
thus, before the extrapolation the contribution of the Gumbel distribution in
percentage can be less than the contribution after the extrapolation because of
the heavier tail.
In this case, the Bayesian factors are applied after the extrapolation. An-
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other thing to be kept in mind is that the estimate is always bounded by the
distributions that are included in the Bayesian analysis. For this reason it is
always recommended to visualise the data in a probability plot together with
the chosen distribution functions to ensure that the distribution functions cover
the data reasonably.

8.3.4 Including the two types of statistical uncertainties
in the estimates

Applying Bayesian analysis to include the uncertainties of the distribution types
and uncertainties of the distribution parameters, the long-term estimate of the
extreme flap moment can be determined. The 100 year return flap moment
obtained in this manner is 5.65 ·106Nm. This is less than one percent difference
from the Weibull estimate without considering any uncertainties.
From a practical point of view one can say that analysis of the uncertainties

contribute to the decision making process. The question of which distribu-
tion model to use is answered by the Bayesian analysis, which clearly favours
the Weibull distribution. The evidence of the predominance of one distribu-
tion function make it often unnecessary to combine the different distributions.
The influence of the uncertainties of the distribution parameters is less than
expected. Normally, the inclusion of uncertainties would lead to a higher esti-
mate of the extreme value. In the Weibull case, the inclusion of the parameter
uncertainty lead to a lower estimate instead. This can be seen in the marginal
distribution of the location parameter u (Figure 8.17). The probability that
the location parameter is below the location parameter estimated with the least
squares method is much higher. Hence, the long-term estimate becomes lower
because integrating over the probability of u with the conditional quantile of
the extreme response (Figure 8.18) yields a lower value.
Bayesian analysis offers a consistent approach to treat the statistical uncer-

tainties that arise due to limited information. Using the Bayesian analysis one
can determine the variablity of the estimate with more confidence.

8.3.5 Variation of the estimates caused by different fitting
methods

The effect of the fitting method on the estimate of the extreme value is studied in
the following section. There are three methods applied to the fitting of the data
obtained by simulations. They are, the method of moments, the non-linear least
squares and the maximum likelihood estimate. These methods were described
in Section 7.3.1. The three methods are applied to fit the Gumbel and Weibull
distribution6. The mean value of the maximum flap moment from 50 simulations
of 10 minutes length, with a mean wind speed of 15 m/s is µy = 4.81 · 106Nm
and the standard deviation is σy = 0.15 · 106Nm.

6Note that in order to preserve the assumptions of a constant standard deviation of resid-
uals and randomness of residuals, it is necessary to transform the empirical CDF to Gumbel
(Weibull) scale before the method of least squares can be applied.
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The difference in the fitting method is usually not of concern if the num-
ber of samples is sufficient. The difference in the estimates will probably be of
negligible magnitude, assuming that the distribution function chosen describes
the behaviour of the data reasonably. The least squares fit is a minimisation
method, finding a set of distribution parameters with a minimal deviation from
the data. The maximum likelihood method finds the maximum of the likelihood
function in the parameter space. As with all numerical problems, the maximum
or minimum found is not necessarily global. The initial value for such problem
can be important. Fortunately, the functions shown here are monotonous and
continuous so that the choice of a numerical algorithm is usually not a prob-
lem. The 100 year flap moment obtained using different fitting methods to the
Gumbel distribution is compared in Table 8.6.

Table 8.6: long-term estimates of the 100 year extreme flap moment obtained
with different fitting methods (Gumbel distribution) cases
Fitting method 100 year return value
Moment of moments 5.97 · 106 Nm
Non linear least squares 6.13 · 106 Nm
Maximum likelihood estimate 6.14 · 106 Nm

The sample skewness is 0.224, which suggests a slightly skewed distribution
toward the positive end. The Gumbel distribution has a larger (fixed) skew-
ness, this leads to a higher estimate in the tail region. With a more flexible
distribution the sample skewness can be matched better. The three parameter
Weibull distribution has one extra parameter to adjust the shape of the dis-
tribution. The three moments of the Weibull distribution (see Equations 7.12
to 7.14) can be used to match the first three sample moments and solving the
three equations simultaneously one can obtain the estimates of the distribution
parameters. The solution of these three equations is not as straightforward as
for the Gumbel distribution, since three non-linear equations have to be solved.
The comparison of the 100 year estimates using the Weibull distribution and
different fitting methods is shown in 8.7.

Table 8.7: long-term estimates of the 100 year extreme flap moment obtained
with different fitting methods (Weibull distribution) cases
Fitting method 100 year return value
Moment of moments 5.45 · 106 Nm
Non linear least squares 5.62 · 106 Nm
Maximum likelihood estimate 5.58 · 106 Nm

The difference in the 100 year estimates between the least squares method
and the maximum likelihood method is insignificant. The method of moments
gives an estimate that is not far from the other two methods, about 3% lower.
If the data set is homogeneous and no outliers are present then all the three
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methods can be used. The difference in the estimates becomes significant if an
outlier is present.

Therefore, an artificial outlier is introduced in the original data to study the
effect of outliers. The outlier lies 5 standard deviations below the mean value.
This distorted data set is fitted to a Weibull distribution. The least squares
method and the MLE produce an estimate of the 100 year return value which
differs about 2% from the original estimates without outlier. The method of
moments fails to produce a solution to the non-linear equations that describe
the statistical moments.

The reason is that the outlier deforms the sample statistical moments consid-
erably. While the mean and standard deviation differ slightly from the original
sample moments, the skewness has changed from 0.22 to -1.13. This makes
it impossible to match the sample moments to the statistical moments of the
distribution.

One may expect that an outlier on the lower part of the distribution does not
change the estimates on the upper part of the distribution. Instead an outlier
that is far above the mean value is introduced in the original data, 5 standard
deviations above the mean value. Table 8.8 shows the influence of the outlier
on the 100 year flap moment using different fitting methods. As expected, an
outlier above the mean value exerts a considerable influence on the extreme
value estimates, while an outlier below the mean value has nearly no influence.
It can also be seen that the MLE is less susceptible to the presence of outliers.

The least squares is a sum based criterion, the deviation caused by the
outlier is added to the rest of the deviation of the data. This portion can be
quite considerable to the total deviation. The MLE is a product based criterion,
the presence of an outlier would have less effect on parameters choice than the
least squares method.

The use of MLE is recommended for fitting of the data to a distribution
function. Although the least squares fit gives generally an adequate estimate
of the distribution parameter as well. In many cases, outliers that emerge from
abnormal simulations can be removed before proceeding to the fitting of a dis-
tribution model. The problem arises when one can not have the certainty of
whether the outlier is an abnormal result or it is actually part of the population.
In such case MLE is to be preferred because it is consistent with the Bayesian
analysis of the statistical uncertainties.

Table 8.8: 100 year return value with outliers cases
Fitting method original data -5 σ outlier +5 σ outlier
LSQ 5.62 · 106 Nm 5.53 · 106 Nm 6.66 · 106 Nm
MLE 5.58 · 106 Nm 5.60 · 106 Nm 6.00 · 106 Nm
LSQ: least squares
MLE: maximum likelihood estimate
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8.4 Remarks on this chapter
In this thesis, the MAX method will be used as the reference method, thus
the treatment of the statistical uncertainties is applied to the MAX estimate
only. A comparison with the MAX estimate gives a picture of the variation of
the estimate from POT and Process models with respect to the MAX estimate.
Since it is an extensive chapter, it may be useful to condense some of the relevant
results.
The following can be said from this chapter

• 50 simulations are regarded as sufficient for estimates of the response dis-
tribution.

• Longer simulation lengths are to be preferred to shorter simulation lengths.
40 minutes can be considered as adequate.

• Statistical uncertainties can be treated with Bayesian analysis; the uncer-
tainties concerning the distribution parameters seem to have little effect
on the estimates of the extreme responses. The uncertainties concern-
ing the choice of distribution models are more considerable. In this case,
Bayesian analysis gives automatically a choice of the distribution model:
the 3 parameter Weibull distribution.

• The maximum likehood estimate of the distribution parameters is to be
preferred, it is more robust for data sets with outliers. In case there are
no outliers, the least squares method gives comparable estimates of the
distribution parameters.

• The MAX estimate is not necessarily a better estimate than estimates
from other methods. In this thesis, the MAX estimate is used as simply
a reference value for comparison purposes, because the statistical uncer-
tainties, the required number and length of simulations etc. are treated
extensively for the MAX.



Chapter 9

Peak Over Threshold
(POT) method

9.1 Summary

By restricting the data to the maximum of each simulation, only a small amount
of the potentially useful information is utilised. This can be improved by in-
corporating more information in the analysis, by including the peaks above a
certain chosen threshold. This increases the amount of information available
for the statistical analysis. There are some ’subjective’ choices that have to be
made before. One of the choices is the threshold value. If the threshold value is
high then the bias of the data can be large. On the other hand if the threshold
is too low than the variance of the data can be considerable. Another issue of
concern is the independence of the peak values. It can be an important para-
meter for the extrapolation of the peak distribution for a stationary period to
the largest peak distribution for a longer period, say, 1 year.
The available POT models are described in Section 7.3. The peak flap

moments of the OWT are fitted to POT models. The turbine used here is the
pitch regulated turbine. The mean wind speed considered is 15 m/s, the length
of simulations is 40 minutes and the turbulence intensity is 0.12. Using the
extrapolation procedure one can predict the distribution of the largest peak for a
stationary period, given the number of independent peaks in a stationary period.
It is expected that with the increase of information the number of simulations
can be reduced. Effectively, one can divide the simulation into shorter pieces
(shorter than the stationary length) and determine the maxima from the shorter
pieces of the simulation. One can say that the shorter the simulation length,
the less likely it is that these maxima are independent because these response
maxima that are close to each other are likely to be the product of the same
event, for example an extreme gust. The variation of the 99 percentile is also
assessed for different numbers of simulations. The influence of the peak counting
method on the response distribution is investigated. The results are compared

101
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Figure 9.1: Least square fit of the Generalised Pareto distribution to the peaks
of the flap moment.

with the estimates obtained with the MAX method.

9.2 Fitting of the data to POT distributionmod-
els

First, the GP distribution and the 3 parameter Weibull distribution are used to
model the peak responses of the flap moment and the overturning moment. A
peak is defined as the maximum between two mean up-crossings. In this way,
the neighbouring peaks of high frequency components of the response around a
local maxima can be eliminated, since these peaks are not independent. Figure
9.1 shows the flap moment in a Pareto probability plot with the fitted GP
distribution. It can be seen that the GP distribution does not fit the flap
moment satisfactorily because the data would appear as a straight line in a
Pareto probability scale. The data suggest that the distribution is not as heavy
tailed as the GP distribution. The same trend is observed for the overturning
moment.
For this reason, the three parameter Weibull distribution is used. It can be

seen in Figure 9.2 that the Weibull distribution offers a better fit to the flap
moment than the GP distribution. Figure 9.3 shows the Weibull fit of the OTM.
The data are plotted in a Weibull probability scale and can be approximated
by a straight line. At lower fractiles, there is a strong deviation from the fitted
distribution. The reason is that the threshold chosen may not be high enough so
that peaks without influence on the extremes are included. This can be avoided
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Figure 9.2: Fit of the Weibull distribution to the peak responses of the flap
moment plotted in Weibull scale.

by increasing the threshold. However, the deviation in the lower tail region
practically does not affect the upper tail behaviour of the Weibull distribution.
It is to be noted that the 3 parameter Weibull distribution also includes the
Exponential distribution, which is one of the POT distribution models.

9.3 Influence of the number of simulations on
POT estimate

At this point, only peaks from one simulation run have been used to fit the
response distribution. For the extrapolation of the peak response distribution
of a stationary period, this may not be sufficient. Peaks of rare occurrence may
not be present in the one simulation chosen for the analysis. For this reason,
the effect of the number of simulations on the estimate of the peak response
distribution need to be studied.
The peak distribution obtained here refers to a distribution when an arbi-

trary local maximum occurs within the simulation length. For the distribution
of the largest peak that can occur during a stationary period, one need to ex-
trapolate using Equation 9.1

FT (m) = [W (m)]
λT (9.1)

where FT (m) is the probability distribution that the response m is not exceeded
in a period of the length T. W is the POT distribution of the stochastic variable
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Figure 9.3: Fit of the Weibull distribution to the peak responses of the over-
turning moment plotted in Weibull scale.

of m. λ is the average number of peaks per time unit T. For the illustration
purpose, the 100 year response is estimated from the peak distribution for only
one mean wind speed. The 100 year response is obtained by extrapolating the
peak response distribution FT (m) to the number of stationary periods in one
year with that mean wind speed. The selected mean wind speed is 15 m/s (see
also Equation 7.2).
The estimates of the 100 year flap moment for several simulations are plotted

together with the maximum peak encountered in the corresponding simulation
in Figure 9.4. It can be seen that there is a strong correlation between the
extrapolated estimate of the 100 year flap moment and the maximum peak that
is encountered in the simulation. Furthermore, the variation of the 100 year
estimate of the flap moment is quite considerable, suggesting that using only
one simulation, estimates of the response of long return periods can be largely
uncertain. The question is how many simulations are necessary to achieve a
reasonably accurate estimate.
To quantify the variation of the estimate, the MAX estimate is used as

a reference value. One may expect that both methods should yield similar
results. Moreover, it is assumed that with the POT method less simulations are
required to achieve an estimate of the extreme response of comparable accuracy
as estimated using the MAX method.
Random drawings of the simulations have been carried out to study the

effect of the number of simulations on the POT estimate. The total number
of simulations used is 50 and the sample size of the random drawing varies
from 1 to 25. For every sample size 20 random drawings are performed. The
mean upcrossing peaks from the randomly drawn simulations are fitted to a
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Figure 9.4: Scatter plot of the maximum flap moment of several simulations
with the 100 year POT estimate of the flap moment from that simulation.

3 parameter Weibull distribution. From the fitted distribution the 100 year
response is determined. Figure 9.5 shows the variation of the 100 year flap
moment with different sample sizes. The mean deviation of the 100 year flap
moment is reduced rapidly with the increase in the number of simulations. With
10 simulations and upwards, the mean estimate of the 100 year response reaches
an asymptotic value, which is about 2% higher than the MAX estimate..
The spreadings of the 100 year flap moment for a given sample size are

also shown in Figure 9.5. The spreading is shown as a two standard deviations
bar from the mean value, i.e. two standard deviations above and below the
mean value. It can be expected that the spreading will be reduced with the
increase of the number of simulations. It can be seen that the POT method
on average, gives a higher estimate of the 100 year flap moment compared to
the MAX method1. The reduction of the standard deviation of the 100 year
response decreases slowly after a sample size of 15 is reached. Weighing the
computational efficiency against the reduction of the spreading, it would be
advisable to choose a number of simulations around 15.
Figure 9.6 shows the same thing as in Figure 9.5 but for the overturning

moment. The trend is comparable to that of the flap moment. Using very low
number of simulations (e.g. 1 to 5), the spreading is lower than the spreading
in the estimate of the 100 year flap moment. For a number of simulations of 10
and upwards, the difference in the spreading between the 100 year OTM and
flap moment is insignificant. Also here it can be said that with 15 simulations

1The POT method does not necessarily provides a higher estimate of the maximum flap
moment than the MAX method, it depends very much on the dataset, the choice of a threshold
and the upper tail of the distribution.
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Figure 9.5: Variation of the 100 year flap moment estimated using different
numbers of simulations.

one can obtain estimates that are comparable to that from the MAX method.

9.4 Selection of the threshold

The question that now arises is whether the fitted POT distribution is sus-
ceptible to the selection of thresholds. One may reason that the underlying
assumption of independence between the peaks are more likely to be true for
larger peaks. The effect of the choice of thresholds on the POT distribution is
studied by choosing different threshold levels. Instead of specifying explicitly
a threshold level, the peaks are ordered according to their magnitudes. Then,
different percentages of the peaks are chosen, such as the highest 10% of the
peaks. These different percentages of peaks are fitted to a 3 parameter Weibull
distribution and the evolution of the 100 year response is examined.
Figure 9.7 shows the 100 year flap moment using different percentage of the

peaks and different numbers of simulations. The figures are normalised with
respect to the 100 year flap moment determined with the MAX method. As
can be expected, if the number of simulations is small the spreading of the 100
year response is large for all the different percentages of peaks, especially for
the case with the highest 10% of the peaks. The variation can be as much as
50%. However, this case has also the lowest spreading of the 100 year response
for an increasing number of simulations.
The disadvantage of taking only the most extreme peaks is that there is a

consistent overestimate of the 100 year response, although the spreading among
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Figure 9.6: Variation of the 100 year overturning moment estimated using dif-
ferent numbers of simulations.

the estimates is the smallest. Increasing the percentage of peaks for the fitting,
increases also the spreading of the estimates.
Defining the bias2 (see Equation 9.2) as the ratio between the mean of the

POT estimates of the largest peak µ̄ in a stationary period and the mean of 50
global maxima, M̄, taken from 50 simulations

Bias =
µ̄

M̄
(9.2)

One can say that the bias decreases with the increase in the percentages of
peaks taken into consideration, while the spreading of the estimates increases
with the percentage of peaks (exceptions are the one sample estimates). The
selection of a threshold becomes a less relevant issue if the number of simulations
used is sufficiently large. With 10 simulations, the difference among the 100
year responses using different percentages of the peaks is less than 3%. Since 15
simulations were recommended, the choice of a threshold is only a real problem
if one considers extremely few peaks from one simulation. For example, if one
considers only 2 peaks per simulation and 15 simulations, there will be 30 data
points for a POT fit. However, 30 peaks can be insufficient for a reliable fit of
the POT distribution. For the OTM, the variation of the estimate is similar to
that of the overturning moment. The choice of the threshold is not of concern
if the number of simulation is sufficiently large, i.e. more than 10.

2Note that often bias has a statistical connotation as difference rather than ratio of two
variables.
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Figure 9.7: estimate of the 100 year flap moment with POT method using
different percentages of the peaks.
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9.5 Peak counting method

In the previous section, a peak is defined as the maximum between two mean
upcrossings. Another way of defining the peaks is to give explicitly a threshold.
If the threshold is the mean response, the number of local maxima is higher
than the mean upcrossing peak definition because of high frequency fluctuation
of the response [39].
The fact that more peaks are counted is reflected in the extrapolation of the

extreme responses. The extrapolation of the response distribution for a random
peak to the distribution of the largest peak in a stationary period T is carried
out with Equation 9.1.
Even though the distribution is not affected by the extra number of peaks due

to the counting method that includes all the peaks above the mean response,
a higher estimate can still be expected due to the increase of λ, the average
number of peaks per time unit. For this reason, this type of peak counting
should not be applied.
Another way of removing the influence of high frequency components of the

response is to define the peaks as the maximum value in one blade revolution.
In this way, the number of peaks in a stationary period is no longer a variable.
To quantify the influence on the estimates between the peaks per blade

revolution and peaks between two mean upcrossings, the bias is used. The bias
is defined as the ratio of the mean of the POT distribution3 and the mean of 50
maxima from 50 simulations (see Equation 9.2).
The different numbers of simulations are also taken into account by making

20 random drawings for each number of simulations. Figure 9.8 shows the bias
of the flap moment using the peak per blade revolution counting and peak
between mean upcrossings. The peak per blade revolution shows a significantly
smaller bias of the mean estimate. The difference in the standard deviation of
the estimates of the mean response is less noticeable between these two counting
methods. For increasing number of data points (that i.e. number simulations),
both give more or less the same standard deviation. Notice that the mean of
the POT estimate is normalised with respect to the mean response estimated
with the MAX method, the standard deviation is also normalised with respect
to the mean response estimated with the MAX method (i.e. the COV).
In terms of the number of peaks, these two counting methods differ only

slightly. The peak per revolution has in average about 10% more peaks than
the peaks between two mean upcrossings. It seems like the periodic component
of the blade response does influence the peak statistics. Given the result, the
peak per blade revolution counting seems to achieve better estimates of the
extreme responses using a POT model. Hence, the peak per blade revolution
counting is recommended for the POT estimate of the flap moment.
Figure 9.9 shows the bias of the overturning moment using the peak per

blade revolution counting and peak between mean upcrossings. The OTM is

3Note that the mean of the POT distribution refers to the mean of the largest peaks in a
stationary period, ,thus, comparable with mean of the maxima.
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Figure 9.8: Bias of the mean estimate and the standard deviation of 100 year
return value with different peak counting method

normalised with respect to the mean of the OTM’s using MAX method. The
bias is extremely small for both counting method, subsequently the standard
deviation is also very small. Hence, both methods produce estimates with no
discernible difference. One thing to be observed is that the peak per blade
revolution counting can not be applied for a turbine in standstill. In this case
the pitch regulated turbine is used. For this turbine, the extreme response
occurs during the operation and it is clearly dominated by the aerodynamic
loadings. For this reason the peaks per blade response works quite well. This is
not necessarily the case for other types of turbines or where the hydrodynamic
loading plays an important role. For this reason the mean upcrossing counting
is to be preferred for the POT estimate of the overturning moment.

9.6 Uncertainties

9.6.1 Linear correlation of the neighbouring peaks

As can be seen before, the peak counting method can affect the extrapolation
of POT distributions. The linear correlation of the peaks can be visualised by
plotting the peak number N against the following peak N + 1. Figure 9.10
shows the scatter plots of the peaks of the flap moment using mean upcrossing
counting and blade revolution counting. It can be seen that the mean upcrossing
counting has a higher threshold than the peak per blade revolution counting
because lower values of the peaks are discarded by the mean upcrossing counting.
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Figure 9.9: Bias and the standard deviation of the mean value of the POT
distribution with different peak counting methods.

Effectively, the threshold for the mean upcrossing counting is the mean response
level. There are numerous peaks during one blade revolution that are below the
mean level of the flap moment. The linear correlation coefficient for the mean
upcrossing counting is slightly lower than the blade revolution counting, 0.76
versus 0.82, respectively. Both counting counting methods show large linear
correlation between two neighbouring peaks.
However, assuming that all the peaks are independent does not lead to an

excessive overestimate of the extreme response. The 100 year responses deter-
mined with the POT method are simlar to the MAX estimate, given a sufficient
number of simulations. Similar to the influence of the number of independent
periods for the extrapolation of the extreme distribution in the MAX method,
the sensitivity of the long-term response estimate to the number of independent
peaks becomes smaller and less important when the POT distribution is used
to predict upper tail realisations of the extremes. This is in the region where
the distribution converges towards results for rare Poissonian events.
It is possible to take the correlation between the peaks into account when

computing the POT estimates using the outcrossing method [32]. However, the
POT estimate differs only slightly from the MAX for responses of long return
period, hence the expected improvement is only marginal.

9.6.2 Combination of POT models with different peak
counting methods

In the previous section, it was shown that the mean upcrossing counting has a
higher bias in the flap moment estimate. It is possible that dropping the peak
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Figure 9.10: scatter plot of the peak N and the peak N +1 of the flap moment
for different peak counting methods.

values below the mean level increases the estimate of the largest peak. Since the
peaks below the mean level may belong to the same peak statistics. The peaks
from one simulation using the two different counting methods are compared.
These two sets of peaks are fitted to a 3 parameter Weibull distribution.
Figure 9.11 shows the mean upcrossing peaks fitted to two different distrib-

ution functions, a Weibull and a Generalised Pareto distribution. The distrib-
ution parameters are maximum likelihood estimates. The Weibull distribution
has problems in fitting the lower tail of the mean upcrossing peaks constrained
by the parameter choice. With the given sample size the K-S test rejects the
Weibull distribution due to the deviation at the lower tail of the distribution.
The Generalised Pareto distribution shows visually a better fit than the Weibull
distribution and the K-S test does not reject it. However, the Generalised Pareto
fit yields a negative shape parameter γ. This produces a right end point in the
distribution, which presents a problem for the extrapolation.
In practice, if one ignores the deviation of the lower tail of the distribution

from the empirical distribution and applies the K-S test to the remaining part
of the distribution then the 3 parameter Weibull distribution will still pass the
goodness of fit test. This is justified by the fact that the region of interests
is on the upper tail region, hence deviation on the lower tail region can be
disregarded.
Figure 9.12 shows the peaks of the flap moment per blade revolution fitted to
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Figure 9.11: Weibull and Generalised Pareto fit of the empirical distribution
function of the mean upcrossing peaks of the flap moment.

a Weibull distribution function. The Weibull distribution fits better the peaks
per blade revolution. The numerical method used here to find a maximum
likelihood estimate of the Generalised Pareto distribution does not converge
within the given precision, thus, the GP distribution is not used. The fitted
Weibull distribution has a longer lower tail and the left end point is usually lower
than the smallest value in the sample, while the Generalised Pareto distribution
usually has a left end point equal the smallest value in the sample. By increasing
the threshold the distribution will be more ’Pareto like’ but again the same
problem with the right end point of the distribution emerges. The question
here is whether the smaller peaks below the mean level can be regarded as a
part of peak statistics. There is no direct justification for the inclusions of these
peaks below the mean level.
However, using the Weibull distribution to fit the flap moment peaks per

blade revolution does produce better fits than fitting the Weibull distribution
to the the mean upcrossing peaks. The deviation of the lower tail does not
lead to a rejection of the Weibull distribution using peaks per blade revolution
counting method. Since GP is not suitable, the 3 parameter Weibull distribu-
tion is recommended for the fit of peaks. It is to be noted also that Weibull
distribution also includes the Exponential distribution, which is another POT
model. In conjunction with the Weibull distribution, the peak per blade revolu-
tion counting produces a lower bias of the estimate with respect to the response
estimated from the MAX method.
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Figure 9.12: Weibull fit of the empirical distribution of the peaks per blade
revolution for the flap moment.



Chapter 10

Time domain analysis using
Process model

10.1 summary

In this chapter the random process model is analysed. The random process
model uses the complete time series to estimate the distribution of the extremes,
more specifically it uses the statistical moments of the time series. Theoretically
such model uses the maximum amount of information, however, there are some
difficulties associated with accurate estimation of the higher statistical moments
from the time series. For a Gaussian process, the distribution of the local
maxima has been extensively investigated in the past [30] [17]. The largest
values of the local maxima follow asymptotically the extreme value distribution
type I (Gumbel). For a non-Gaussian process, the higher statistical moments
have to be taken into account as well. Usually a perturbation approach can be
used to consider the deviations from the Gaussian skewness and kurtosis [65].
This can also be done with a Hermite transformation [99].
First, the different process models are applied to obtain the estimates of the

extreme response of a pitch regulated wind turbine. The results are compared
to the estimates using the MAX method. The extreme response distribution is
determined using the statistical moments from the simulation time series. An
advantage of this approach is that the use of statistical moments can be trans-
lated into less simulations because they characterise the process and all the data
points are being taken into account. On the other hand the Gaussian model
take only the first two statistical moments into account and while weakly non-
Gaussian models consider the skewness and/or kurtosis of the process, these
higher statistical moments are subject to a larger statistical variation than the
first two moments, hence uncertainties of these parameters are also larger. De-
spite of the limitations and uncertainties it will be shown that the process model
estimates are of comparable accuracy to the estimates of MAX and POT meth-
ods.
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10.2 Gaussian model
Davenport [30] has shown that if the underlying parent distribution is Gaussian
then the largest values will asymptotically follow a Gumbel distribution. The
expectation values of the Gumbel distribution can be written as

µmax = µ+ σ

µp
2 logN0 +

γe√
2 logN0

¶
(10.1)

µmax is the mean of the Gumbel distribution, µ and σ are the mean value and
standard deviation of the process respectively. N0 is the number of upcrossings
and γe is the Euler’s constant. The variance σ

2
max of the distribution is

σ2max =
π

6

σ2

2 logN0
(10.2)

where σmax is the standard deviation of the Gumbel distribution. The mean
and standard deviation of the Gumbel distribution can be calculated directly
from Equations 10.1 and 10.2 using the process mean and standard deviation.
The mean and standard deviation of the Gumbel distribution are related to the
location and scaling parameters and they can be calculated using Equations
7.10 and 7.11.
50 simulations with a mean wind speed of 13 m/s and the corresponding

wave parameters were carried out for the pitch regulated wind turbine. The
simulation length is 10 minutes. From the 50 simulations, N simulations are
randomly drawn, N varies from 1 to 10. The statistical moments from these N
simulations are determined. For every N, 20 random drawings are performed
so that the variation of the estimate for a given number of N simulations can
be quantified. The variation of the statistical moments of the flap moment is
depicted in Figure 10.1. The values are normalised with respect to the mean
values of 10 simulations. In the figures an error bar of 1 standard deviation is
also shown. Figure 10.1 (lower right) also shows the 99 percentile of the Gumbel
distribution.
As can be seen the mean value has the smallest variation, while the variation

of skewness is very large. There are samples that have very low skewness, near
zero, and samples with small skewness in the order of 0.3. Thus, the relative
variation is quite significant. In comparison, the kurtosis (not shown here) has
larger absolute variation than the skewness, but the relative variation of the
kurtosis with respect to the mean of the kurtosis from 10 simulations is limited,
between 0.9 and 1.1 (with respect to the Gaussian kurtosis of 3). The relative
variation of the kurtosis is higher than the variation of standard deviation. The
99 percentile of the distribution varies slightly more than the mean value but
less than the other statistical moments. The 99 percentile of the distribution
converges after 6 simulations. Adding more simulations to the statistical analy-
sis brings no significant reduction to the estimate of the 99 percentile. In a
Gaussian model, the skewness and the kurtosis are not taken into account. For
this reason the variation of the 99 percentiles does not reflect the variation of
the skewness and kurtosis.
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Figure 10.1: Mean value, standard deviation, skewness of the maximum flap
moments and the 99 percentile of the distribution as function of the number of
simulations; shown with errorbars of one standard deviation.

The variation of the statistical moments of the overturning moment shows
very similar behaviour to the flap moment. The mean value has the lowest
spreading followed by the 99 percentile of the Gumbel distribution. The skew-
ness has only negative values with large relative variation, the values vary be-
tween -0.05 to -0.32. The kurtosis varies around 3, between 2.8 and 3.3. The
99 percentile of the Gumbel distribution of the OTM is not affected by the
variation of the skewness and kurtosis due to the Gaussian assumption.
The Gaussian model makes use of the asymptotic behaviour of the distri-

bution of the local maxima with a Normal distribution as parent distribution.
The local maxima of a Gaussian process converges to a Gumbel distribution.
This is valid for large values of the stochastic variable, in this case the extreme
responses, and a large number of local maxima, Nm. Instead of using the as-
ymptotic result, the analytical distribution of the local maxima can be used.
This distribution is also known as the Rice distribution [63].
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Frice(ζ) = Φ

µ
ζ√
1− α2

¶
− αe

ζ2

2 Φ

µ
αζ√
1− α2

¶
(10.3)

where Φ is the standard Normal distribution and α is the regularity factor
defined as the ratio between the number of mean upcrossingsN0 and the number
of local maxima Nm. N0 and Nm are calculated directly from the simulation
time series by counting. The distribution of the largest value for an interval T
(in which Nm is present) is

FT (ζ) = [Frice(ζ)]
Nm (10.4)

From Equations 10.3 and 10.4, the 99 percentile of the distribution of the
extreme flap moment for a period T can be determined. Comparison of the
asymptotic result with the ’exact’ result is given in Figure 10.2. It also shows
the variation of the 99 percentile with the number of simulations. For each
number of simulations 20 random drawings are performed. The spreading of
the estimates is illustrated with errorbars of 1 standard deviation. The values
are normalised with the 99 percentile estimated using the MAX method. As can
be seen the asymptotic estimate is above the MAX estimate while the ”exact”
estimate lies in average 6% below it.
There are several explanations for this deviation. First, the asymptotic esti-

mate is higher because it assumes thatNm is very large. Thus, the extrapolation
will give a higher estimate. Another source of overestimation comes from the
kurtosis. The Normal distribution has a kurtosis of 3, but some simulations
have kurtosis slightly below 3. A larger kurtosis means a heavier tail than the
Gaussian distribution. On the other hand, the positive skewness suggests that
the distribution are skewed toward the upper tail. All these factors together
make the Gaussian estimate of the extreme flap moment agrees reasonably well
with the MAX estimate. The ”exact” estimate considers the actual number
of Nm, but lack the ability to correct the effects of a non-zero skewness and a
kurtosis that is different than 3. This leads to an estimate below the asymptotic
estimate using the Gumbel distribution.
Another conclusion that can be drawn is that the mean value of the estimate

varies very little with the number of simulations. However, the increase of
number of simulations does reduce the spreading of the estimates. This means
that instead of grouping the simulations together one can use estimates from
different simulations and takes the averaged values of the estimates. This is
shown in Figure 10.3. The values are normalised with the 99 percentile from the
MAX estimate. Notice also that these are random drawings from 50 simulations,
for this reason the spreading of estimates for 10 simulations is not zero.
Grouping means that all the simulations are merged into one single time

series and the statistical moments are obtained from the merged time series.
Averaging means that the statistical moments are computed separately for each
time series, then the 99 percentiles of the distribution are determined. The
average value is taken from all the 99 percentiles. Obviously the spreading of the
estimates decreases with the number of simulations for both procedures but in
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Figure 10.2: comparison of the 99 percentile of the distribution of the flap
moment using the Gumbel asymptotic estimate and the Rice distribution; with
errorbars of one standard deviation.

absolute term the ’Averaging’ approach achieves a lower scatter. The spreading
in estimates decreases rapidly, with more than 5 simulations the spreading of
the estimates decreases very slowly. For the overturning moment the averaging
procedure gives also smaller scatter than the grouping procedure.

10.3 Weakly non-Gaussian models applied to the
flap moment

10.3.1 Weakly non-Gaussian model with skewness correc-
tion

As mentioned before the response time series are not strictly Gaussian. For this
reason, models that include correction terms based on the skewness and the
kurtosis [65] [99] were developed. The non-Gaussian process is written as

X(t) = ξ + η
¡
ζ(t) + ²ζ(t)2

¢
(10.5)

where ζ is a standard Normal process, ξ and η are constants that are related
to the process mean and standard deviation, ² is a correction factor for the
non-Gaussian process. Equation 10.5 is usually used for small ². The three
parameters, ξ, η and ², can be determined from the mean, standard deviation
and skewness of the time series. The first order approximations are [65]
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Figure 10.3: 99 percentile of the distribution of the flap moment using different
number of simulations. The statistical moments are estimated by grouping or
averaging; shown with errorbars of one standard deviation.

ξ ≈ µx − ²σx (10.6)

η ≈ σx (10.7)

² ≈ β

6
(10.8)

where, µx is the mean of the sample, σx is the standard deviation and β is the
skewness. Equation 10.5 is also valid for the maximum of the process so that

Xmax(t) = ξ + η
¡
ζmax(t) + ²ζmax(t)

2
¢

(10.9)

The relationship between Xmax and ζmax is monotonic for small ², that
means that there is a one to one correspondence between Xmax and ζmax. The
distribution forXmax can be written in terms of the distribution of ζmax through
a functional transformation [1]

FXmax = Fζmax ·
¯̄̄̄
dζmax
dXmax

¯̄̄̄
(10.10)

The asymptotic distribution of ζmax is a Gumbel distribution with the mean
and standard deviation as given in Equations 10.1 and 10.2. The resulting
distribution of FXmax is close to the Rice distribution if the parameter ² is
small. The distribution of the largest values in a period T is then
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FT =

µ
Fζmax ·

¯̄̄̄
dζmax
dXmax

¯̄̄̄¶Nm
(10.11)

This will converge to Gumbel distribution if dζmax
dXmax

is nearly constant and
the number of local maxima, Nm is large. If that is the case the mean and
standard deviation of the Gumbel distribution FT can be also approximated,
see [65]. Figure 10.4.shows the 99 percentile of the extreme flap moment from
different approximations of Equation 10.11. One of the possibilities is to use the
Rice distribution as Fζmax , shown as ’Rice distribution’ in the figure. The sec-
ond choice is to approximate the term (Fζmax)

Nm using a Gumbel distribution,
shown as ’Gumbel distribution’ in the figure. The third possibility is to model
the distribution FT as a Gumbel distribution, shown as ’Approximated Gumbel
distribution’. The 99 percentile of the distributions using different approxima-
tions are normalised with respect to the 99 percentile obtained with the MAX
method.

As can be seen, the Rice distribution gives the closest estimates to the MAX
estimate, considering that it is the theoretically exact distribution. Approaching
the term (Fζmax)

Nm with a Gumbel distribution gives a slightly higher estimate
of the 99 percentile, about 5% on average (shown as ’Gumbel distribution’ in
Figure 10.4). The approximation of the distribution FT as a Gumbel distribution
gives an estimate of the 99 percentile of the flap moment that is 30% above the
MAX estimate, on average. Figure 10.4 also shows the spreading of the estimates
determined by random drawings. For each number of simulations, 20 random
drawings are carried out. The spreading is shown as errorbars of 1 standard
deviation.

Using the Rice distribution with skewness correction the estimates are im-
proved with respect to the Gaussian model, cf. Figure 10.2 Nevertheless, the
Gaussian model using Gumbel distribution delivers an estimate that is very
close to the estimate using the Rice distribution with skewness correction. The
Rice estimate can be further extended with a kurtosis correction, however, the
margin of improvement may be small because the deviation of the estimates
with skewness correction is about 2% , on average (with respect to the MAX
estimate).

It should be noted that the time series generated with a computer are strictly
stationary. The wind input is Gaussian, thus the predicted estimates of the ex-
treme response are quite close to the theoretical values predicted by a Gaussian
model. For measured time series where the inputs are non-Gaussian and non-
stationary, the improvement of the non-Gaussian model can be more significant.
The approximation of the FT with a Gumbel distribution can not be justified
here because the overprediction is quite considerable.
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Figure 10.4: 99 percentile of the distribution of the maximum flap moment
obtained using different distribution approximations as function of the number
of simulations; shown with errorbars of one standard deviation.

10.3.2 Non-Gaussian model with skewness and kurtosis
correction

Equations 10.5 and 10.9 can be further extended with the correction of the
kurtosis of the data. This can be written in terms of a Hermite polynomials
[101]

X(t) = µx + ϕσx
¡
ζ(t) + c3(ζ(t)

2 − 1) + c4(ζ(t)3 − 3ζ(t)
¢

(10.12)

µx and σx are the mean and standard deviation of the time series of the response,
ϕ is a normalisation factor defined as

ϕ =
1p

1 + 2c23 + 6c
2
4

(10.13)

c3 and c4 are related to the skewness and kurtosis of the sample. They are
chosen in such a way that the deviation of the skewness and kurtosis of the
data to the skewness and kurtosis of the process is minimised The first order
approximations are

c3 =
β

6
; c4 =

κ− 3
24

(10.14)

where κ is the kurtosis of the time series of the response. Equations 10.12
to 10.14 are valid for kurtosis larger than 3. For kurtosis smaller than 3 the
transformation is
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X(t) = µx + σx

Ãµq
ζ̂(t)2 + ϕ+ ζ̂(t)2

¶1/3
−
µq

ζ̂(t)2 + ϕ− ζ̂(t)2
¶1/3

− a)
!

(10.15)
with

ζ̂(t) = 1.5b(a+ ζ(t))− a3 (10.16)

ϕ = (b− 1− a2)3

a =
4

3

β

κ− 3 , b = − 8

κ− 3

In both cases, the transformation is monotonous. Analogously this can be ap-
plied to obtain the maxima of the process as described in the previous sec-
tion. Since it is a monotonous transformation, the probabilities of the Gaussian
process can be mapped accordingly to the probability of the non-Gaussian
process ( Equation 10.10 and 10.11).
Figure 10.5 shows the estimates of the 99 percentiles of the distribution of

the extreme flap moment, with skewness and skewness-kurtosis correction. The
result is normalised with the 99 percentile from the MAX estimate. It has to
be kept in mind that the MAX estimate is also a stochastic estimate. The
variation of the MAX estimate was quantified with a bootstrap procedure using
50 simulations. From these 50 simulations 1000 bootstraps are carried out. The
bootstrap samples are fitted to a 3 parameter Weibull distribution and the 99
percentiles of the distributions are determined. The reference value of 1 is the
mean value of the 99 percentiles (1000 values). The boundary of one standard
deviation of the bootstrap estimates is shown in the figure as well.
As can be seen the variation of the MAX estimate quantified by the bootstrap

is in general smaller than the spreading of the estimates of the non Gaussian
models . The inclusion of the kurtosis leads to a lower estimate of the 99
percentile because the kurtosis of the time series are in many cases below the
Gaussian kurtosis of 3. Due to a considerable spreading of the kurtosis, the
spreading of the 99 percentiles is also larger.
The relative variation of the skewness is quite large, but in absolute terms

the variation of the kurtosis is larger. Hence the correction brought by the
kurtosis can fluctuate considerably, adding more spreading to the 99 percentile
estimates. The skewness corrected estimate represents a quite good agreement
with the MAX estimate. In general, estimates of higher statistical moments
are associated with uncertainties that increase with the order of the statistical
moment. The higher statistical moments are more susceptible to outliers and
extreme values. For this reason, it can not always be expected that the inclusion
of kurtosis will improve the estimates of the 99 percentiles. In this case a
skewness correction is a better choice.
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Figure 10.5: Estimates of the normalised 99 percentile of the extreme flap mo-
ment with skewness or skewness and kurtosis correction; shown with errorbars
of one standard deviation.

10.4 Process models applied to the overturning
moment

The Gaussian and weakly non-Gaussian models are applied to the time series
of the overturning moment to determine the 99 percentile of the distributions
of the maximum overturning moments. The 99 percentiles are normalised with
respect to the 99 percentile estimated from the MAX method using 50 simula-
tions. The variation of the MAX estimate is quantified with bootstraps. 1000
bootstraps are performed and the bootstrap samples are fitted to a 3 parameter
Weibull distribution. The 99 percentiles of the distributions are determined.
The variation of the 99 percentiles of the bootstrap samples is shown in Figure
10.6 as a rectangle, that contains one standard deviation below and above the
mean value. Furthermore, for each number of simulations 20 random drawing
are carried out and the spreading of estimates of the 99 percentiles is shown as
errobars of 1 standard deviation.
The Gaussian model gives a 99 percentile that is about 5% above the MAX

estimate, on average. Althought the spreading within the estimates is much
lower than the non-Gaussian models. This is because the fluctuation of the
mean and standard deviation from simulation to simulation is smaller compared
to the fluctuation of the skewness and kurtosis.
The skewness corrected model gives an average estimate that is within one

standard deviation from the MAX estimate. The mean deviation is about 2%
below the MAX estimate. The variation of estimate of the 99 percentile within
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Figure 10.6: comparison of the estimate of the 99 percentile of the overturning
moment with different process models. Normalised with MAX estimate; shown
with errorbars of one standard deviation.

the number of simulations is larger than the Gaussian model, but still lower
than the skewness-kurtosis corrected model.
The skewness and kurtosis corrected model does not perform better than the

other models. The variation is very significant from one estimate to another.
This has to do with the fact that the higher statistical moments are subject to
larger variation when estimated from limited data. Thus, the large variation of
the kurtosis propagates into the 99 percentile of the distribution. The asymp-
totic estimate used in [65] produces here also an estimate that is about 20%
higher than the MAX estimate and it is not shown here.

10.5 Selection of the model

For both flap moment and OTM the Gaussian process model perform reasonably
well. The asymptotic approximation using a Gumbel distribution does partially
compensate the underestimate by disregarding the positive skewness of the time
series.
For non-Gaussian models, it is recommended to use the Rice distribution

directly to model the distribution of local maxima. The approximation of the
distribution of the largest value in a non-Gaussian process using Gumbel dis-
tribution can lead to much higher estimate than the MAX model, about 20 to
30% on average.
The skewness correction gives a better estimate than the estimate of skewness-

kurtosis correction. Moreover, the large variation of the kurtosis propagate
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larger fluctuation to the estimates of 99 percentiles. For this reason the skew-
ness correction is to be preferred.



Chapter 11

Long-term distributions

11.1 Relevant sea states for the long-term dis-
tribution

Until now only conditional distributions are analysed and in some cases the con-
ditional distribution of one sea state is extrapolated to obtain extreme responses
of a certain return period, e.g. 100 years. Theoretically, for a correct estimation
of the extreme response one needs to take into account the contributions from
all the conditional distributions, i.e. conditional distributions that correspond
to different sea states.
According to Equation 7.1 all the conditional distributions for a given set

of sea state parameters have to be considered to obtain the distribution of
the extreme response for a random sea state. However, the upper tail of the
distribution is unlikely to be influenced by the conditional distributions from
’mild’ sea states. The question here is how many of the sea states in a scatter
diagram need to be taken into account. First, it is necessary to identify the
severe sea states that cause extreme responses.
The sea states are divided in three different operation modes.
1: Idle, with wind speeds below the cut-in wind speed. This operation mode

is unlikely to trigger extreme responses, unless combined with other discrete
extreme events.
2: Normal production, with wind speeds between the cut-in and cut-out wind

speed. During this stage, energy is being extracted from the wind and thrust
forces can be considerable, which can have significant influences on the tower
bending. In this operating condition, the dominant forces are the aerodynamic
forces.
3: Standstill, after the wind speed has reached the cut-out wind speed, the

wind turbine is shut down and the blades turn to a parking position where the
thrust forces are minimized1. The dominating loading here is the wave loading.

1This can vary from turbine to turbine. Some turbines have special manoeuvres to reduce
the thrust forces (such as pitching or yawing) while other turbines may simply shut down
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Figure 11.1: Overturning moment in an extreme sea state (standstill) with and
without wave loads for the pitch regulated wind turbine.

Figure 11.1 shows the overturning moment of the pitch regulated turbine in
an extreme sea state. The wind turbine is not operating and, as can be seen, the
contribution of the wind forces to the overturning moment is insignificant. This
is due to the fact that the blades are positioned in such a way as to minimise the
drag force which contributes to the tower bending. For other turbines, such as
stall controlled turbines where blade pitching is not possible, the contribution
of the aerodynamic forces to the overturning moment can still be significant.
Figure 11.2 shows the flap moment ratio at the blade root for two different

types of turbines. The flap moment is normalised with respect to the flap mo-
ment at a mean wind speed of 13 m/s. The most important load situations are
around the rated wind speed (13.7 m/s) for the pitch regulated turbine. Around
the rated wind speed, the maximum thrust is also reached, which contributes
the most to the overturning moment. In contrast, the flap moment of a stall
regulated turbine increases monotonically with the mean wind speed. For the
stall regulated turbine, the extreme responses occur at extreme sea states with
high mean wind speed and large significant wave height, rather than during the
turbine operation.
In [24] the maximum overturning moment of the pitch controlled turbine at

standstill has been studied. The wave load dictates the overturning moment and
the base shear during storm situations. For the rotor blade, the flap moment
is relatively small compared to the flap moment during the turbine operation.
The OTM during operation is larger than the OTM during the most severe sea

without special load reducing measures.
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Figure 11.2: Maximum flap moment ratio for different wind speeds (turbine in
operation)

state found in the hindcast data. The contribution of the blade forces to the
OTM during operation exceed the contribution of the wave loads to the OTM
during storms. For this reason, it is likely that the extreme responses of this
turbine are to be expected during turbine operation.
The wave loads have practically no influence on the extreme flap moment

of the blade. This is due to the low excitation frequency of wave load and the
relatively high natural frequency of the rotor [58]. During the turbine operation,
the different wave parameters that correspond to a given mean wind speed cause
only small variations on the response of the support structure. One may expect
that the wave parameters have more significant influence on the overturning
moment of the support structure. This is, however, suppressed by the dominant
contribution of the aerodynamic forces to the overturning moment. Also because
at the rated wind speed, the wave conditions are rather harmless compared to
the waves in a storm situation. For this reason it is not necessary to consider
all the combinations of the significant wave height and wave periods for each
mean wind speed since this variation is negligible for the pitch controlled wind
turbine.

11.2 Contributions of the conditional distribu-
tions to the yearly extremes: pitch turbine

In the previous section, the sea states that are relevant for the extreme responses
are identified for the pitch regulated wind turbines. The most severe extreme
response distribution contributes the most to the long-term estimate of the
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extreme responses. In this section an effort will be undertaken to quantify the
participation of the different sea states in the estimation of the extreme response
for a given return period, e.g. 100 year.
Five mean wind speeds around the rated mean wind speed have been se-

lected, they represent the most severe load situations for the pitch regulated
turbine (during operation). For these five mean wind speeds 50 simulations are
carried out with a simulation length of 40 minutes. The 50 maxima of the flap
moment and overturning moment are fitted to a 3 parameter Weibull distribu-
tion. The frequency of occurrence of these mean wind speeds (averaging period
of 1 hour) are listed in Table 11.1

Table 11.1: frequency of occurrence of different mean wind speeds
Mean wind speed (m/s) frequency number of hours/year
13 0.048 421
14 0.041 360
15 0.031 278
16 0.028 253
17 0.008 76

Subsequently, N random drawings are performed on each of the conditional
distributions of the response, where N is the number of occurrences in hours in
one year (see Table 11.1). For example, the mean wind speed of 15 m/s has 278
hours of occurrences per year. Thus, 278 random numbers between 0 and 1 are
drawn. Using the inverse function of the conditional distribution of the extreme
flap moment for the mean wind speed of 15 m/s, one obtains 278 estimates
of the extreme flap moment. This procedure is repeated for other mean wind
speeds.
From all the random samples of the extreme responses from five mean wind

speeds, the largest value represents the 1 year extreme response. Repeating this
procedure for 100 times, one can obtain 100 extreme values which represent the
100 yearly maxima of the response. The most extreme response in one year
does not necessarily come from the most severe mean wind speed, in this case
15 m/s. Although, the chance that this 1 year extreme response comes from
that mean wind speed is larger than for the other mean wind speeds. Each of
the mean wind speeds will contribute differently to the 100 yearly maxima of
the extreme response.
Since the random drawing is a stochastic process, the number of contribu-

tions to the 100 yearly maxima of the extreme response will vary. For this
reason, the random drawing is repeated for 1000 times to quantify the variation
of the contribution of each mean wind speed to the yearly maxima.
The mean values and the standard deviation of the contributions to the

100 yearly maxima of the flap moment from the five mean wind speeds are
shown in Table 11.2. It can be seen that the major contribution comes from the
mean wind speed of 15 m/s. Basically, this mean wind speed delivers 60 yearly
maxima (from a total of 100) on average. Figure 11.3 shows the variation of
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Table 11.2: statistical parameters of the number of contributions to the 100
yearly maxima of the flap moment from different mean wind speeds
Mean wind speed (m/s) Mean number of contributions standard deviation
13 1.9 4.0
14 12.4 9.7
15 59.7 14.6
16 25.6 13.3
17 0.23 1.5
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Figure 11.3: Variation of the number of contributions to the 100 maxima of the
flap moment (year maxima) for the mean wind 15 m/s.

the contribution of the mean wind speed (15 m/s) to the total number of yearly
maxima of the flap moment (100 maxima). The number of contributions can
vary from as low as 20 to as much as 90.
The predominance of the most severe mean wind speed lies in the fact that

it determines the tail of the distribution of the yearly maxima. Even if the
contribution to the 100 yearly maxima is as low as 20, the randomly drawn
maxima from the conditional distribution of this mean wind speed are usually
not much lower than the maxima contributed by other mean wind speeds.
To illustrate the predominance of this mean wind speed, the randomly drawn

100 maxima (year maxima) of the flap moment are fitted to a Gumbel distribu-
tion. This is done for the 100 maxima contributed by all the mean wind speeds
and the 100 maxima contributed by the mean wind speed of 15 m/s. The 100
year flap moment is estimated from the fitted Gumbel distribution. The results
are shown in Table 11.3.
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It shows that using only the most severe mean wind speed the estimates
differ, in average, no more than 0.8% from the estimates using all the 5 mean
wind speeds. Using only the most severe mean wind speed can give a slightly
lower estimate than using all the mean wind speeds. From the 1000 randomly
drawn samples of the 100 yearly maxima, the maximum difference in the 100
year response is merely 2.7%. From this one can conclude that for this pitch reg-
ulated wind turbine, using the most severe conditional distribution it is possible
to obtain an accurate estimate of extreme values of long return periods.

Table 11.3: statistical parameters of the 100 year flap moment and OTM esti-
mated from the most severe mean wind speed and from 5 mean wind speeds.

Data mean standard dev.
Mflap with all the Ū 6.22·106 Nm 0.06·106 Nm
Mflap with Ū = 15m/s 6.18·106 Nm 0.06·106 Nm
OTM with all the Ū 4.54·107Nm 0.04·107Nm
OTM with Ū = 15m/s 4.51·107Nm 0.04·107Nm
Mflap = flap moment
Ū = mean wind speed

11.3 Variation of the extrapolation parameters

It has been shown that for the pitch controlled turbine, the long-term response
can be estimated accurately using the most severe sea state. The question is
whether this can be assumed for different wind turbines with different response
characteristics and external conditions. For this reason, the influence of several
parameters on the extrapolation of the long-term response is studied. The
turbine used now is the stall regulated turbine. The extreme response for this
turbine occurs at extreme mean wind speeds beyond the cut-out wind speed.
For this reason only the standstill condition is considered. It can be seen from
the extrapolation equation (Equation 7.2) that the total number of the sea
states2, and the participations of these sea states have direct influence on the
estimate of the long-term response. The purpose of this section is to show
the qualitative influence of the parameters that influence the estimate of the
long-term response, for this reason it is applied only to one turbine.
The base values used here to normalise the y-axis of the figures are the 100

year flap moment and the 100 year OTM obtained from considering all the sea
states beyond the cut-out wind speed in the scatter diagram. Figure 11.4 shows
the 100 year flap moment estimated from the most severe sea state where the
total number of sea states is different. As can be seen, the variation of the total
number of sea states has only a marginal effect for this turbine.

2The total number of sea states considered in the analysis, since it is usually not necessary
to consider all the possible sea states for the extreme response distribution.
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Figure 11.4: Influence of the total number of sea states on the long-term estimate
of the stall regulated wind turbine. (left: flap moment, right: OTM); the ratio
is between the most severe sea state and all the sea states.

The reason is that the increase in the total number of sea states, also in-
creases the influence of the tail of the distribution, consequently the influence of
the most severe sea state. A further increase in the number of sea states means
that it is sufficient to take the conditional distribution of the most severe sea
state into account to determine the long-term response. It can be expected that
with a low number of sea states, using only the most severe sea state can lead to
an underestimate of the long-term response (Figure 11.4 right), but again the
order of underestimate is rather small.
The relative occurrence frequency3 of the sea states plays also an important

role on the outcome, they are the weighting factors of the different conditional
distribution functions. The relative occurrence frequency of the most severe sea
state in this case is about 0.0054. If the relative occurrence frequency of the
most severe sea state increases, there is basically no need to take the other sea
states into account. On the other hand, if the relative occurrence frequency
of the most severe sea state decreases, the contribution of the other sea states
to the long-term estimate becomes more significant. As a matter of fact, the
estimate of the long-term response using only the most severe sea state becomes
an overestimate. This can be seen in Figure ??. The decrease or increase of
the relative occurrence frequency of the most severe sea state is redistributed
to the rest of the sea states so that the sum of the relative frequency remains
1. The normalisation factor is recalculated according to the new distribution of
the relative occurrence frequencies.

3The relative occurrence frequency of a sea state refers to the ratio between the number
of occurrences of that sea state to the total number of sea states. Note that this parameter
depends on the specific location.

4This is the occurrence frequency of the sea states with a mean wind speed of 15 m/s,
a significant wave height of 3.25 m and a zero upcrossing period of 6.25 s. The occurrence
frequency of the sea states with a mean wind speed of 15 m/s (irrespectively of Hs and Tz)
is 0.031.



134 CHAPTER 11. LONG-TERM DISTRIBUTIONS

0 0.01 0.02 0.03 0.04 0.05
1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

relative frequency 

ra
tio

 o
f 1

00
 y

ea
r  

fla
p 

m
om

en
t 

0 0.01 0.02 0.03 0.04 0.05
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

relative frequency 

ra
tio

 o
f 1

00
 y

ea
r  

O
TM

 

Figure 11.5: Influence of the relative occurrence frequency of the most severe
sea state on the long-term estimate of the stall regulated wind turbine. (left:
flap moment, right: OTM); the ratio is between the most severe sea state and
all the sea states.

Needless to say, the distribution function itself has large influences on the
estimate of the long-term response. In this case, the distribution functions have
characteristic values (e.g. location factor) far away from each other. Thus,
the dominance of one conditional distribution of the response can be such that
the inclusion of other conditional distributions has no effect on the long-term
distribution.
On the other hand, if the conditional distributions of the response are closer

to each other, this may change the tail of the long-term distribution. Since
the conditional distributions can only be known once they have been obtained
through simulations or measurements, it is difficult to assess its influence. For
this reason a fictitious sea state is added to the scatter diagram. The response
distribution of the imaginary sea state is identical to that of the most severe
sea state, only with a different location parameter. The relative occurrence
frequency of this imaginary sea state is also taken as a variable.
Figure 11.6 shows the influence of this imaginary sea state on the estimate of

the long-term response. It can be observed that if the conditional distributions
are far away from each other (i.e., the location parameters of the distributions
differ significantly), the presence of such sea state has basically no effect on
the long-term distribution. However, if the distribution functions are close to
each other, the influence of this fictitious sea state on the long-term distribution
of the response becomes more significant. In the presence of such a fictitious
sea state, using only the response distribution of the most severe sea state to
determine the 100 year response will produce always an underestimate. This
can be seen in Figure 11.6. Here, the location parameter varies from 70% to
90% of the location parameter of the distribution of the most severe sea state.
With a location parameter that is 70% of the most severe one, there is basically
no influence. With 90% the influence increases with the relative occurrence
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Figure 11.6: Influence of a fictitious response distribution whose location para-
meters have relative shifts to the location parameter of the overturning moment
distribution of the most severe sea state; the ratio is between the most severe
sea state and all the sea states.

frequency of the fictitious sea state. The reference occurrence frequency is the
relative occurrence frequency of the most severe sea state.
It can be said that if there is only one dominating conditional distribution

and the relative occurrence frequency of that sea state is not too low, then the
long-term distribution of the extreme response can be determined with sufficient
accuracy using the most severe sea state. However, to determine the most severe
sea state, it is necessary to run simulations for all the sea states, although one
can use the mean extreme response of the sea state as a representative measure
for the severity of the sea state. As shown before, the mean of the maximum
response can be determined with relatively few simulations, e.g. 5.
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Chapter 12

Constrained simulation of
extreme wind gust and
wave

12.1 Introduction

In the previous chapters, the response based methods have been applied to ob-
tain the extreme responses of a certain return period of an offshore wind turbine.
However, the current design practice uses an external condition based approach.
The external condition based approach determines the external condition of a
given return period and determines the extreme response using that external
condition.
One of the extreme load conditions is when an extreme gust reaches the wind

turbine. On the other hand one can also expect that when an extreme wave hits
the support structure, extreme responses can occur as well. These load cases
have to be considered during the design process of the wind turbine. Current
design codes, such as the IEC [53], describe the extreme gust in a deterministic
way with a specified amplitude, shape and duration. The shape of the IEC gust
resulted from analyses of the wind data. However, validation of the proposed
gust shape with the theory was not present during the drafting of the code.
One of the objections to the deterministic gust shape is that it does not in-

clude the stochastic properties of the gusts. With constrained simulations, one
can model the extreme wind gust with stochastic properties. The constrained
simulation of the waves has been applied to offshore structures and the subject
is treated in detail in [49]. For this reason the emphasis of this chapter is on
the constrained wind gust. The main idea behind a constrained simulation is to
impose a theoretically derived average form (e.g. an average gust shape) on a
previously simulated signals (e.g. a stochastic wind field), so that a character-
istic of the signals (in this case, a predetermined gust speed) can be obtained.

137
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The pitch regulated turbine is used here. The flap moment at the blade root
due to extreme gusts is studied using the constrained simulations. Different
gust models and the influence of the gust centre on the blade response is inves-
tigated. The gust response is conditioned on the gust amplitude and the mean
wind speed. The gust response distribution is determined using the conditional
distribuitions of the gust response and the probability density distribution of
the gust amplitude and of the mean wind speed.
The number of simulations that are required to achieve a reliable estimate

of the conditional distribution of the gust response is also studied. The blade
response obtained with the deterministic gust model is compared to the response
obtained with constrained simulations.
The constrained simulations of the waves are applied to obtain the distri-

bution of the overturning moment. In this case, no wind input is given. The
response obtained using the constrained simulations is compared to the response
obtained using the Stream functions.
Theoretically one can build the extreme response distribution based solely

on the constrained simulations. However, the problem concerning the combina-
tion of constrained wind gusts and waves is not yet solved. The joint occurrence
probability of the wind gust and extreme waves is not known. Moreover, it is
necessary to carry out a large number of constrained simulations in order to ob-
tain the conditional distributions of the response. Note that these distributions
are conditioned on amplitudes (gust amplitudes, wave heights) as well as the
mean wind speeds.
A promising application of the constrained simulation is to improve the

current description of extreme wind gust and waves for response calculations.
By carrying out a series of constrained simulations one can gain insight in the
variation of the extreme responses. Given the fact that constrained simulations
give a better description of the physical phenomena of the extreme wind gusts
and extreme waves, it represents also a more realistic load description.
The combination of extreme wind gust and wave loading is explored with

constrained simulations. The Turkstra’s rule [64] is applied to combine the ex-
treme gust and wave loadings. To investigate how the response varies if the
maximum wind speed and the maximum wave height do not occur simultane-
ously, a time delay between the two maxima is introduced. The influence of the
time delays on the extreme responses is studied.

12.2 Extreme gust response

12.2.1 General considerations

Although extreme gusts occur also in the conventional wind simulations, a long
simulation length is usually required to obtain gusts of a large amplitude, be-
cause the probability of occurrence of such gusts is small. With the constrained
simulation technique, it is possible to generate stochastic gusts with predefined
amplitude, at a pre-selected location and point in time. The basic idea of con-
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Figure 12.1: Stochastic and deterministic wind gusts, solid line is a constrained
gust and the dash-dot line is the IEC gust.

strained simulations is to impose a theoretical gust shape on the (simulated)
wind turbulence. This is done in such a way that the constrained gust is sta-
tistically equivalent to the gust of the same amplitude found in a long wind
simulation.
Theoretically, the constraint should be applied to a three-dimensional tur-

bulence wind field, given the fact that the 3D turbulence structure exerts an
influence on the gust response. However, the emphasis here is on the method-
ology. For this reason only the horizontal along wind component of the wind
speed is considered. A constrained gust is shown together with the IEC gust in
Figure 12.1.
Two different gust models are compared, a uniform gust and a spatial gust.

A uniform gust is stochastic in time but not in space. That means, the maximum
wind speed is reached simultaneously over the whole rotor surface. A spatial
gust has stochastic variations in space and in time. The spatial gust considers
the cross correlation of the wind speeds at different locations.
One of the issues that arises from the application of the spatial gusts is the

variation of the gust centre. The gust centre is a stochastic variable, whose
distribution can not be determined without an extensive investigation. There
is no clear indication how the gust centre is distributed in space. Hence a
sensitivity study is carried out to quantify the variation of the blade responses
due to changes in the gust centre.
The response resulting from a constrained simulation of the wind gust is

different from simulations to simulations. Thus, using a certain number of
simulations one can obtain the conditional distribution of the gust response. The
conditional distributions of the gust response are fitted to different distribution
models.
One of the questions raised when fitting the gust responses to a distribution
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is the number of simulations required to obtain a reliable estimate of the dis-
tribution parameters. The spreading of the distribution parameters is studied
with a bootstrap-like method [35]. This method consists of random drawing of
gust responses that are obtained with constrained simulations. The randomly
drawn responses are fitted to a 3 parameter Weibull distribution. The random
drawing is performed many times to determine the variation of the distribu-
tion parameters. The confidence intervals of the parameter spreading are also
determined.
To obtain the gust response distribution for a random mean wind speed, it is

necessary to perform a convolution on the conditional distributions of the gust
response with the PDF of the gust amplitudes and of the mean wind speeds.

12.2.2 Deterministic gust model

The IEC deterministic gust used for calculation of the extreme gust during
operation is defined as

u(z, t) =

(
Ū(z)− 0.37ugustN · sin(3πt/T )(1− cos(2πt/T )) 0 ≤ t ≤ T
u(z) = Ūhub

³
z

zhub

´α
0 > t and t > T

)
(12.1)

The gust speed ugustN is defined in terms of the standard deviation of the
horizontal wind turbulence and a gust factor, which is related to a return period
(see [53]). Ū(z) describes the height dependency of the mean wind speed, that
is, the wind shear. It is described in Equation 3.4. The wind speed at the hub
height is used as the reference value. One of the main purposes of the IEC gust
is to determine the response of the wind turbine controller to a fast rising gust.
It is not necessarily the most realistic representation of a wind gust.

12.2.3 Stochastic gust model

Recently efforts have been made to model extreme gusts that take into account
the stochastic properties of the wind [9].
There are different definitions of a wind gust. In this thesis a gust is de-

fined as a local maximum above a certain wind speed. 20 seconds are chosen
as the duration of a wind gust1, centred on the maximum wind speed. Note
that different definitions of the gusts yield different statistics of the gusts. For
example, one previous study of the wind gust statistics [19] defines a gust as the
difference of two wind speeds at two different instances in time. The gust statis-
tics obtained in this manner are fundamentally different than the gust statistics
used in this work [8].
The shape of the averaged gust has been verified with wind measurements.

Figure 12.2 shows the verification of the mean shape of the gust with measure-

1One can chose a longer gust duration but the constrained wind gust far from the time
point of the constraint, t0, will resemble that of the stochastic background.
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Figure 12.2: Measured (anemometer) and predicted average gust shapes based
on 1335 gust observations corresponding to 10-minute mean wind speeds re-
stricted to the range from 9 m/s to 11 m/s.

ments from wind database [89]. The PDF of the gust amplitude2 is depicted in
Figure 12.3. Both the shape and the statistics of the gust show a good agree-
ment with the theoretical predictions. In few cases a smaller negative gust that
precedes a larger positive gust (as specified in the IEC code) can be observed in
the measurements. However, the amplitudes of the negative gusts are usually
less than 10% of the positive gust.
For a single point in space the constrained wind signals are [9]

ucr(t) = u(t) +R(t− t0)(A− u(t0)) + Ṙ(t− t0)u̇(t)
Ṙ(t0)

(12.2)

u(t) is the original wind signal, R(t) is the auto correlation function, and A is
the prescribed gust amplitude. t0 is an arbitrarily chosen time point, where the
prescribed gust amplitude occurs and t is simply the time. The influence of the
term with the time derivative of the auto correlation function is neglected. This
term ensures that the constrained gust is a local maximum with a slope of 0 at
the time of the constraint. Theoretically, this term is close to a delta function
and contributes only to the constrained gust amplitude at the time point t0.
Thus, the Equation used for the contrained wind gust is reduced to

ucr(t) = u(t) +R(t− t0)(A− u(t0)) (12.3)

As can be seen from Figure 12.1 the shape of the constrained gust resembles
the auto correlation function in the neighborhood of the constrained point. As
the gust amplitude A increases, the term with the auto correlation function in

2The negative gust level is because there are local maxima which are below the mean wind
speed.
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Figure 12.3: Measured and theoretical PDF of the gust amplitudes.

Equation 12.2 dominates and the effect of the second term can be neglected.
With the decay of the auto correlation function, the constrained wind signals
distant from the constraint point approach the original wind signals.
To create a constrained gust in time and space it is necessary to consider the

cross correlation function and the time derivative of the cross correlation func-
tion, together they determine the ‘deterministic’ part of the spatial gust. The
formulation is identical to Equation 12.2, by replacing the uniform formulation
of the wind and correlation function with the spatial formulation of the wind
and the cross correlation function. The deterministic part of a spatial gust is
illustrated in Figure 12.4. In Figure 12.5 a spatial gust is shown for the time
point when the maximum gust speed at the gust centre is reached. As it can be
seen the gust dimension is considerably large, which could imply that the shift
of the gust centre would have limited effects on the gust response.

12.2.4 Gust response variations due to different gust mod-
els

Uniform and deterministic gust responses

The responses of the blade to a deterministic and a stochastic (uniform) gust
is illustrated in Figure 12.6. The response shown is the bending moment in the
flap direction at the blade root. The pitch regulated wind turbine is used. The
mean wind speeds are 13 m/s and 14 m/s. The controller is active after the
rated mean wind speed (13.7 m/s) is reached. The gust amplitude is 10 m/s
above the mean wind speed for both cases.
At a mean wind speed of 13 m/s, the stochastic gust noticeably contributes

to the dynamic excitation of the wind turbine, producing higher mean response
of the blade than the deterministic gust. The rotational effect can be seen
in the flap moment of the deterministic gust, because of the constant wind
speed assumed outside the gust duration T . The response peak occurs nearly
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Figure 12.5: Constrained spatial gust
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Figure 12.6: Flap moment at the blade root of the pitch regulated wind turbine
at mean wind speeds of 13 m/s (left) and 14 m/s (right). Solid line is from
constrained simulation and dashed line is from the IEC gust.

simultaneously with the gust peak in case of the deterministic gust. For the
stochastic gust, the peak response occurs in the neighbourhood of the contraint.
The maximum of the flap moment is similar for both gust models.
At a mean wind speed of 14 m/s, the response differs considerably. The

activation of the controller leads to a reduction of the maximum blade response
using the stochastic gust. As shown in Figure 12.6 (right), the controller is
able to ‘filter’ the gust excitation. In this case, the gust does not effectively
contribute to the increase of the blade response. In contrast, the deterministic
gust produces a much higher blade response than the stochastic gust and the
effect of the gust peak on the response can be clearly seen. The role of the
controller is crucial, since it is unable to react to the IEC gust. For pitch
regulated wind turbines, the IEC gust will produce a higher estimate of the
peak flap moment. However, the controller is an integrated part of a wind
turbine and the influence it exerts on the turbine response differs from turbine
to turbine. It is not possible to determine quantitatively the influence of the
controller from the study of a single controller.
The mean response of the flap moment increases with the gust amplitude for

mean wind speeds below the rated wind speed. The standard deviation increases
sharply for large gust amplitudes. The absolute wind speed difference that the
wind turbine experiences (i.e. the difference between the maximum wind speed
and the minimum wind speed in the neighbourhood of the constraint) differs
from simulation to simulation because of the stochastic wind signals. This leads
to a large spreading of the extreme flap moment even with the same constraint
for all the simulations, namely the same maximum wind speed.
When the wind turbine operates with an active controller the mean and

standard deviation of the peak flap moment remain approximately constant,
due to the ’filtering’ of gust loads by the controller. The variation of the peak
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Table 12.1: Peak bending moment with the IEC gust and the mean value of the
constrained simulations (mean wind speed = 13 m/s)

Gust amplitude IEC gust (106Nm) mean (106Nm)
above mean
8 m/s 4.60 4.66
10 m/s 4.76 4.79
13 m/s 4.91 5.62
15 m/s 5.17 6.67

flap moment is limited within the 10% of the mean response [21].
In Table 12.1 the maximum of the flap moment at the blade root produced

by deterministic gusts are listed together with the mean flap moment produced
by constrained gusts of the same gust amplitude. For each amplitude 30 con-
strained simulations are carried out. The mean wind speed is 13 m/s.
For small amplitudes, the means of maximum flap moment are quite close

to the peak flap moment of the deterministic gusts. The difference increases
with increasing gust amplitudes. The stochastic gusts seem to produce higher
responses.
In many cases, a local maximum near the time point of constraint is observed

in the original wind signal. The superposition with the mean gust shape will
shift this local maxima upwards. Thus, besides the principal gust peak defined
by the constraint, there is another local maximum preceding it. This often leads
to a higher gust response.
It can be seen that the deterministic gusts yield a lower estimate than the

mean of the maximum flap moments using contrained simulations. However,
it has to be noticed that the higher gust amplitudes given here have very low
exceedence probability, which can be as much as 9 standard deviations away
from the mean wind speed, given a turbulence intensity of 12%.
Above the rated wind speed, the IEC gust consistently delivers a higher

estimate of the peak flap moment than the contrained gusts. Table 12.2 shows
the maximum flap moment of the blade, with IEC deterministic gusts and the
mean value of the maximum flap moments with uniform constrained gusts.
The mean wind speed is 20 m/s. As mentioned before, the controller was not
able to react to the IEC gust, thus, unable to reduce the blade response. The
characteristic of this particular controller plays a crucial role in determining the
peak response.

Uniform and spatial gust response

The uniform gust refers to a gust that is uniform across the rotor area (wind
shear effect is included). However, a real wind gust has spatial variation as well.
One can expect that these two gust models will produce different responses.
The difference in the blade response due to spatial gusts and uniform gusts

is studied. The gust response increases monotonously with the gust amplitude.
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Table 12.2: Maximum flap moment with the IEC gust and the mean value of
the maximum flap moment with constrained gusts (mean wind speed = 20 m/s)

Gust amplitude IEC (106Nm) mean (106Nm)
above mean
8 m/s 4.42 3.55
10 m/s 4.18 3.41
13 m/s 4.69 3.45
15 m/s 4.87 3.29

The uniform gust produces a consistently higher estimate of the peak response
of the blade than the spatial gust. This can be attributed to the fact that the
maximum gust speed occurs simultaneously at all locations in case of a uni-
form gust. The uniform gust produces an estimate of the peak blade responses
that deviate at most 10% from the peak responses obtained by spatial gusts.
Another consequence of using uniform gusts is that a uniform gust produces a
much higher thrust to the tower due to the coherence of the gust. The tower
thrust has an important contribution to the overturning moment of the sup-
port structure, hence the overturning moment is higher in case of a uniform
gust. In the following sections, only the spatial gust is used in the constrained
simulations.

Variation of the gust centre

In the previous calculations the gust centre is fixed in the middle of the rotor
although the location of the gust centre is random. To study the influence
of the gust centre on the blade response, gusts with different gust centres are
constructed and the blade responses are determined. Two different mean wind
speeds are selected, 13 m/s and 14 m/s. The gust amplitude is 7 m/s above
the mean wind speed. The gust centres are positioned in five different blade
locations for twelve azimuth angles. For each blade location 10 simulations
have been carried out. The pitch regulated wind turbine is used.
Figure 12.7 shows the mean value of the maximum flap moment for mean

wind speeds of 13 m/s (upper) and 14 m/s (lower) respectively at 3 different
blade locations and 12 different radial positions. The blade locations are nor-
malised with respect to the rotor radius R. The response is normalized to the
maximum response calculated for the respective mean wind speed. The radius
of the circle represents the normalised response ratio, varying from 0 to 1. How-
ever, the figures for mean wind speeds of 13 m/s and 14 m/s are not directly
comparable because the maximum gust response of these two mean wind speeds
differ considerably.
At 13 m/s the variation of the mean of the maximum responses can be quite

considerable but the variation does not have a definite pattern, except that the
maximum gust response is registered in the upper region of the rotor swept
area. Even with a radial position of 0.035 (very close to the hub) the variation
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of the response is still quite considerable. The maximum variation between
the maximum gust responses is within the boundary of 25% of the maximum
response registered for the mean wind speed of 13 m/s.
For 14 m/s the variation of the gust center has also impacts on the gust

response. The activation of the controller reduces the gust response and the
variation of the gust response is also reduced. The difference between the maxi-
mum and minimum of the mean of the maximum gust response for different gust
centers is reduced to about 15 %. For a given azimuth position the variation of
the gust response among different radial positions is, in general, also decreased
compared to the same situation for the mean wind speed of 13 m/s.
The gust centre has definitely influence on the extreme flap moment. How-

ever, from the calculations performed here it can not be concluded that there
is a correlation between the location of the gust centre and the increase of the
maximum flap moment. Although, with 10 simulations, the stochastic variation
among the simulations can be significant, but on the other hand the maximum
variation of the peak response is not large (maximum 25%). This is partly due
to the dimension of the gust, which is large compared to the dimension of the
rotor. The present knowledge of the spatial gust does not allow a reliable treat-
ment of the gust centre as a stochastic variable. For this reason, the gust centre
is placed in the middle of the rotor in the following calculations.

12.2.5 Gust response distribution

The gust responses obtained by constrained simulations will be fitted to distri-
bution models. The wind turbulence is generated using the wind field generator
SWING4 [6], but the method can be adapted to any conventional wind field
generator. The hub is chosen as the gust centre. The pitch regulated wind
turbine is used and the turbulence intensity is 0.12. The 3 parameter Weibull
distribution is used to fit 50 maxima of the flap moment from 50 constrained
simulations.
To obtain the distribution of extreme gust response, it is necessary to deter-

mine the conditional distributions of the gust response for a given gust amplitude
and a mean wind speed. Theoretically, the conditional distribution of the gust
response needs to be determined for every mean wind speed. However, those
mean wind speeds that do not deliver large gust responses, have insignificant
contributions to the upper tail of the distribution. The reason is that when
the distribution is extrapolated to a longer period using Equation 12.5, the tail
of the distribution is determined by the conditional distributions of those wind
speeds that produce large blade responses.
The extreme gust responses of the pitch regulated turbine are concentrated

around the rated wind speed [23]. Four mean wind speeds, from 13 to 16 m/s,
are chosen and the blade response to the stochastic gusts are studied for five
different gust amplitudes, 1.5 σ − 5.5 σ.,where σ is the standard deviation of
the wind turbulence.
The statistical moments of the maximum gust responses from 50 constrained

simulations are shown in Tables 12.3 and 12.4 for the mean wind speeds 13 and
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Table 12.3: Statistical moments of 50 maxima of the constrained gust responses
of the pitch regulated wind turbine; for different gust amplitudes at a mean
wind speed of 13m/s.

Gust amplitude mean standard dev. skewness
above mean (106Nm) (106Nm)
1.5 σ 4.02 0.127 0.31
2.5 σ 4.10 0.131 0.77
3.5 σ 4.24 0.121 -0.02
4.5 σ 4.39 0.120 -0.18
5.5 σ 4.49 0.085 0.62

Table 12.4: Statistical moments of 50 maxima of the constrained gust responses
of the pitch regulated wind turbine; for different gust amplitudes at a mean
wind speed of 14m/s.

Gust amplitude mean standard dev. skewness
above mean (106Nm) (106Nm)
1.5 σ 3.67 0.087 0.81
2.5 σ 3.66 0.085 0.98
3.5 σ 3.69 0.082 0.21
4.5 σ 3.63 0.118 -1.46
5.5 σ 3.64 0.087 0.82

14 m/s, respectively. The average of 50 maximum gust responses increases
monotonously with the gust amplitude at a mean wind speed of 13 m/s. At
this mean wind speed, the controller is not active; thus, increases in the wind
speed are translated into increases of the blade response. However, the standard
deviation of the gust response decreases slightly with the gust amplitude. This
can be attributed to the fact that the gust amplitude dictates the extreme gust
response at large gust amplitudes. Thus, the maximum gust response has a
smaller spreading. At smaller gust amplitudes, the turbulent background can
have considerable influence on the gust response. The distribution parameters
of the maximum gust responses are shown in Table 12.5. As can be seen, the
location parameter increases with the gust amplitude, which reflects the increase
of the maximum gust response with the gust amplitude. It can be observed also
that large values of the scale parameter are paired with large values of the shape
parameter.
The response characteristics are very different at the mean wind speed of

14 m/s. The response is practically independent of the gust amplitude because
the gust load is virtually filtered by the blade pitch controller. For the mean
wind speeds 15 m/s and 16 m/s (not shown), the responses are lower, hence
the contribution of these two wind mean speeds to the tail of the gust response
distribution is limited.
At 14 m/s with a gust amplitude of 4.5 σ, the simulated gust response has
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Table 12.5: The Weibull distribution parameters of the gust response distribu-
tion for different gust amplitudes at a mean wind speed of 13m/s; for the pitch
regulated wind turbine.

Gust amplitude location parameter scale parameter shape k
above mean u (106Nm) s (106Nm)
1.5 σ 3.68 0.38 2.64
2.5 σ 3.91 0.20 1.38
3.5 σ 4.03 0.25 2.02
4.5 σ 4.09 0.33 2.66
5.5 σ 4.37 0.13 1.41

Table 12.6: Weibull distribution parameters of the gust response distribution for
different gust amplitudes at a mean wind speed of 14m/s; for the pitch regulated
wind turbine.

Gust amplitude location parameter scale parameter shape k
above mean u (106Nm) s (106Nm)
1.5 σ 3.54 0.15 1.41
2.5 σ 3.54 0.12 1.18
3.5 σ 3.55 0.16 1.81
4.5 σ 2.99 0.68 8.46
5.5 σ 3.52 0.13 1.28

a negative skewness and the distribution parameters deviate significantly from
the rest. It is possible that the stochastic gusts have la arger rise time and the
controller was able to limit the gust response or, it may be that these deviations
are simply due to the presence of some outliers in the simulation result. How-
ever, a closer inspection of the data does not reveal any anomaly. This deviation
of the distribution parameters, however, does not affect the tail of the distribu-
tion. Table 12.6 shows the distribution parameters of the 3 parameter Weibull
distribution for the gust response of 14 m/s. The distribution parameters of the
gust amplitude of 4.5 σ differ significantly from the others, with a large scale
parameter and a large shape parameter.
The goodness of fit test was carried out for the fitted distributions. The

Kolmogorov-Smirnov test is used with a significance level of 5%. The Weibull
fits are shown in Figure 12.8 and Figure 12.9 for mean wind speeds of 13 m/s and
14 m/s, respectively. The upper tail of the extreme gust response distributions
for 14 m/s is fairly independent of the gust amplitudes. This can be attributed to
the influence of the pitch controller. Although the lower tail of the distributions
does differ for different gust amplitudes. This is associated with the difficulty
of identifying the extreme response caused by the extreme gust because not all
the stochastic gusts manifest themselves in the response. The controller can
suppress the gust load, hence the maximum response is not always a direct
product of the extreme gust.
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Figure 12.8: Weibull fit of the conditional distributions of the gust response for
different gust amplitudes at a mean wind speed of 13 m/s.
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Figure 12.9: Weibull fit of the conditional distributions of the gust response for
different gust amplitudes at a mean wind speed of 14 m/s.
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Once the conditional distributions of the gust response for different gust
amplitudes are established, the gust response for a given mean wind speed can
be determined [49] according to the Equation 12.4, given the distribution of the
gust amplitude fv(σ):

Fm(M) =

Z
Fm(M)|σ · fv(σ)dσ (12.4)

Here, Fm is the cumulative probability function of the peak flap moment
and fv is the probability density function of the gust amplitude in terms of
the standard deviation σ and Fm|σ is the distribution of the peak flap moment
conditioned on σ.
Assuming that a gust represents a positive local maximum, the theoretical

distribution can be derived for a Normal process [17]. The local maxima of
a Gaussian process follow the Rice distribution (see Equation 10.3); the Rice
distribution depends on the spectral bandwidth of the process. In the limiting
cases of a narrow and a wide band process, the distribution of the local maxima
is the Rayleigh and the Normal distribution, respectively. The wind turbulence
can be considered as a wide band process, with a spectral bandwidth parameter
close to 1. Hence, the Normal distribution can be used to describe the distribu-
tion of the gust amplitude, in case an empirical distribution from measurements
is not available.
In theory, the distribution of the gust amplitude is a continuous function.

However, the simulation can deliver only conditional distributions for discrete
gust amplitudes. Therefore, as a simplification, Equation12.4 is discretised for
5 amplitudes and the resulting distribution is the sum of the conditional distri-
butions weighted with the occurrence probability of the gust amplitude range.
One can also interpolate the distribution parameters to achieve a continuous de-
scription of the conditional distributions of the gust response, such as shown in
the extrapolation of the joint probability of the sea state parameters (see Figure
3.3 and 3.4). However, a simple interpolation can not be used here because of
the parameter correlation, which can yield meaningless parameter combinations
(see for example the distribution parameters for 4.5 σ in Table 12.6).
Equation 12.4 represents the gust response distribution to a single gust. To

predict the maximum gust response within a stationary period of 10 minutes,
it is necessary to determine how many independent gusts can be expected. The
estimate of gust number with the mean upcrossing frequency results in a large
number of gusts. Furthermore, by assuming that all the gusts are independent,
it will yield a conservative estimate of the gust response.
For this study, a practical measure following reference [4] is taken. It is

assumed that in the interval, in which the normalised auto correlation function
is higher than 0.5, only one independent gust exists. The maximum number of
independent gusts can be calculated from this interval length. For the present
purpose this practical measure of the correlation length is sufficient, given the
presence of other uncertainties. Moreover, the influence of the number of inde-
pendent gusts on the tail of the distribution becomes less significant when the
distribution is extrapolated to a period T .
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The distribution of the largest gust response in the 10-minute period can
be extrapolated given the number of gusts N10. The largest gust response
distribution for the 10-minute period can be written as

F10(M) = Fm(M)
N10 (12.5)

F10(M) is the cumulative distribution of peak flap moment for a 10-minute
period (a function of the mean wind speed) and Fm(M) is the cumulative dis-
tribution of the peak flap moment for a single gust (the cumulative probability
function obtained in Equation 12.4).
The distribution of the gust response during operation can be obtained by

integrating the conditional distributions of the gust response between the cut-in
and cut-out mean wind speeds.

F (M) =

Vcut−outZ
Vcut−in

F10(M)|Ū10 · f(Ū10)dŪ10 (12.6)

F10(M)|Ū10 is the conditional distribution of the peak flap moment obtained
in Equation 12.5 and f(Ū10) is the probability density function of the mean
wind speed, usually a two parameter Weibull probability density function. In
this case, only the mean wind speeds between 13 m/s and 16 m/s are considered
because the other mean wind speeds do not contribute significantly to the upper
tails of the distribution.
The distribution obtained with Equation 12.6 represents the response dis-

tribution for a random stationary period of 10 minutes. It can be extrapolated
to distributions which represent the largest gust response in a period of 1 year,
20 years or 50 years etc. Following the same principle as described in Equation
12.5, the number of gusts N10 is replaced by the number of independent station-
ary periods. In this case, it is the number of stationary periods (of 10 minutes
length) of the considered mean wind speeds. The extrapolated distributions are
shown in Figure 12.10.

12.2.6 Number of constrained simulations

The gust response distribution was obtained with a limited number of simula-
tions. Before the return periods of the gust response can be determined, it is
necessary to consider the variation of the distribution parameters due to the
limited number of simulations, since it will affect the estimate of the return
period of the extreme gust response
The methodology used here is similar to the methodology employed to deter-

mine the required number of simulations for the MAX method. 500 constrained
simulations with the mean wind speed of 13 m/s are carried out. The simulation
length is 76 seconds and the gust amplitude is 3 σ. From the 500 simulations 500
maxima of the gust response are obtained. N random maxima are drawn each
time. The set of random maxima is fitted to a 3 parameter Weibull distribution.
This process is repeated 100 times with different N .
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Figure 12.10: Long-term distribution of the gust response distribution function
for different periods.

The variations of the distribution parameters u, s and k are presented in
Figures 12.11 to 12.14. The distribution parameters obtained from the fitting
of the 500 maxima are used to normalise the values (on the y axis). The 99
percentile of the distribution obtained with the reference distribution parameters
is used to normalise Figure 12.14.
The upper boundary of the location parameter u is very close to the reference

value using 500 simulations. Practically, it does not change with the number
of simulations because the location parameter determines the left end point of
the distribution and it can not be much larger than the minmum gust response
in the data, while it can be much smaller than the minimum gust response. As
can be seen, the lower boundary of the location parameter is subject to a larger
fluctuation.
The scale parameter s and the shape parameter k have a fluctuating upper

boundary. The variation of these two parameters with the number of simulations
is quite similar. This can be attributed to the correlation between the two
distribution parameters (see also Figure 8.12).
However, the predicted 99 percentiles of the distribution parameters have

a much smaller variation. Since these are the values that are relevant for the
extrapolation of the long-term extreme response, it can be said that the pre-
dicted 99 percentiles can be used as a criterion to choose the required number
of simulations. The 99 percentile of the distribution is shown in Figure 12.14.
From Figure 12.14 it can be seen that the 99 percentile of the distribution

converges rapidly util it reaches 100 simulations. From there the increase of
the number of simulations contributes marginally to an estimate closer to the
reference value (from 500 simulations). With 50 simulations, the spreading
of the 99 percentiles is about plus and minus 5% from the reference value.
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Figure 12.11: Variation of the location parameter u of the Weibull distribution of
the maximum gust response (flap moment) for different numbers of simulations.
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Figure 12.12: Variation of the scale parameter s of the Weibull distribution of
the maximum gust response (flap moment) for different numbers of simulations.
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Figure 12.13: Variation of the shape parameter k of the Weibull distribution of
the maximum gust response (flap moment) for different numbers of simulations.
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Table 12.7: Variation of the distribution parameters from 100 bootstraps (mean
wind speed 13 m/s)
Gust amplitude in σ mean µ stand. dev. σ skewness

(106Nm) (106Nm)
u 3.79 0.21 -2.09
s 0.43 0.21 2.06
k∗ 3.66 1.67 1.97
99 percentile of the 4.59 0.03 0.10
flap moment distribution
* the unit does not apply for k

Furthermore, with a smaller number of simulations, the prediction of extremes
tends to be above the reference value. Even with only 10 simulations the lower
limit of the 99 percentile is merely 5% from the reference value. From the study
of the parameter variation with the number of simulations, it can be concluded
that 50-100 simulations would suffice for a reliable estimate of the gust response
distribution.
The conclusion drawn above was based on the assumption that 500 simu-

lations are representative for the gust response, it is necessary to investigate
the variation of the distribution parameters given 500 simulations. The tradi-
tional bootstrap method with replacement is used to generate artificial results.
The bootstrap has been done 1000 times. The variation of the distribution
parameters are given in Table 12.7

The variation of the location parameter u is limited and negatively skewed
because the upper limit of the location parameter is more or less determined by
the minimum gust response in the data. The scale and shape parameter have
larger variations. However, the 99 percentiles have a rather small variation.
This effect was already illustrated previously by the correlation of these two
distribution parameters. If the 99 percentile of the flap moment is normalised
with the mean value of the 99 percentile estimates from the 1000 bootstraps,
then it can be seen that the two standard deviation is about plus or minus
one percent. It can be said that the variation of the 99 percentiles given 500
simulations is not significant.

12.2.7 Choice of distribution functions

To determine the gust response of a longer return period one needs to extrap-
olate the gust response distribution. The extrapolation depends on the distrib-
ution model used. Three different distribution models are used to determine to
which extent the choice of distribution models can affect the prediction of the
extreme response of long return periods.
The three distribution functions are, the 3 parameter Weibull, Gumbel and

Rayleigh distribution. The 3 parameter Weibull is chosen due to the versatility
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Figure 12.15: Distribution of the gust response fitted with different distribution
functions conditioned on the gust amplitude of 1.5σ and mean wind speed of 13
m/s. (Weibull scale)

it has shown in the fitting of response maxima in the MAX method. The
Gumbel distribution is a commonly used distribution to model extremes and
theoretically, the Rayleigh distribution is included in the Weibull distribution,
however, the constraint of the shape parameter gives a different fit than the
Weibull distribution. The K-S goodness of fit test does not reject the Rayleigh
fit.
Figure 12.15 shows the fit of the gust response to different distribution func-

tions; the gust amplitude is 1.5 σ and the mean wind speed is 13 m/s. All the
three distribution functions pass the K-S goodness of fit. The test is only ap-
plied to the upper tail, which is the region of interest, although the deviation in
the lower tail can be quite significant. Nevertheless, all the three distributions
model the upper tail reasonably well.
Figure 12.16 shows the conditional distribution of the gust response obtained

from Equation 12.4 with a mean wind speed of 13 m/s.
The difference in the estimates of the 99 percentile can be considerable de-

pending on the choice of the distribution model. The Weibull and the Rayleigh
distributions give a very similar estimate. Obviously, the small difference is
because the Rayleigh distribution is closely related to the Weibull distribution.
However, in the lower exceedence probability region (upper tail)of the response,
the Weibull distribution has a heavier tail than the Rayleigh distribution.
The highest estimate of the 99 percentile comes from the Gumbel distribu-

tion. The extrapolation carried out in Equation 12.5 amplifies the difference in
the tail regions of the different distribution functions (see Figure 12.16). Nu-
merically, the 99 percentile of the Gumbel fit is approximately 10% higher than
the Weibull fit.
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Figure 12.16: Distribution of the gust response fitted with different distribution
functions conditioned on mean wind speed of 13 m/s. (Weibull scale)

To obtain a better fit of the tail of the distributions, one can use only gust
responses above a certain threshold. However, that will cause the uncertainty of
the estimated parameter to increase due to the fact that fewer data are available.
In the present analysis, the difference of the 99 percentile of the gust response
using the different distributions is within a limit of 10 percent. The three
parameter Weibull distribution is a reasonable choice for the present purpose,
since it offers more flexibility than the Rayleigh and Gumbel distributions. The
uncertainty of the distribution choice can be taken into account by applying a
Bayesian analysis, described in Section 8.3.

12.3 Extreme wave response distribution

12.3.1 Deterministic models of extreme wave

The current design of OWT uses deterministic wave models to model the ex-
treme wave loads. There are several non-linear wave models that can be used to
calculate the structural response due to extreme waves. A commonly used one
is the Stokes wave. It incorporates higher order waves in order to satisfy the
non-linear boundary conditions. The inclusion of the higher order waves leads
to an asymmetrical wave profile. The crest becomes larger than the trough.
The wave forces of non-linear waves are higher than the wave forces of the lin-
ear wave theory, partly because of the higher particle velocity predicted by the
non-linear wave theory. Stokes waves are suitable for description of ocean waves
in deep waters or in waters of a intermediate depth. In the near future, it is
very likely that most of the OWT’s will be situated in shallow waters. For this
reason, Stokes waves do not describe appropriately the kinematics for extreme
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wave forces in shallow water regions.
In the simulation code DUWECS[102], the stream function is implemented.

the non-linear wave from Stream functions are more suitable for describing waves
in shallow waters. The basic thought behind the stream functions is to use
wave functions of higher orders to fulfil the non-linear boundary conditions.
The coefficients of the stream function are chosen such that the errors in the
non-linear boundary conditions are minimised. As with the deterministic gust
model, the disadvantage of the deterministic waves is that it does not take into
account the stochastic properties of the waves.
The non-linear waves yield higher wave loads than the linear waves. In a

stochastic environment, there are non-linear phenomena that can yield extreme
structural responses, for example the breaking waves. Breaking waves are a
stochastic phenomenon that still needs further investigations, especially in the
region of shallow waters. For the moment being, the influence of the breaking
waves on the distribution of the extreme response is excluded.
Figure 12.17 shows the response of a monopile to an extreme wave using

10th order Stream functions. The turbine used here is the stall regulated wind
turbine. The natural period of the support structure can be found in Appen-
dix C. No aerodynamic loading is present. The wave height in the simulation
represents the extreme wave height of a return period of 50 years specified in
the Opti-OWECS study(12.8 m). The wave period corresponding to this wave
height is 9.5 s. It can be seen that the Stream function does not produce a
sinusoidal wave and the fundametal frequency of the monopile can be observed
clearly in the response time series of the monopile.

12.3.2 Stochastic model of extreme waves

From statistical studies, it has been shown that the expected shape in the neigh-
bourhood of a local maximum of a Gaussian process can be described analyti-
cally. This has been applied to the ocean waves. Considering an extreme wave as
a local maximum, the average shape of an extreme wave in a random Gaussian
sea can be expressed analytically in terms of the auto correlation function. This
leads to the formulation of New Wave [87], which can be used as a design wave.
Embedding the New Wave in a random wave field, one can produce a con-
strained wave of predefined crest height. This constrained wave represents an
extreme wave with stochastic properties, which is, statistically speaking, indis-
tinguishable from an extreme wave obtained from a long simulation of random
waves.
How does the response of the support structure to constrained waves compare

to the response from deterministic non-linear waves ? To answer this question,
a number of simulations with constrained waves has been carried out. In each
constrained wave simulation the maximum crest height at the time point of
contraint is specified. In contrast, the Stream function uses the maximum wave
height as an input parameter. Using the 50 year return sea state specified in
the Opti-OWECS study, the maximum wave height of the design wave is 12.8
m. The stall regulated wind turbine is used and the number of simulation is
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Figure 12.17: Overturning moment of an extreme wave of 50 year return period
using Stream Function

50. The significant wave height for the random simulation is 6.9 m and the zero
upcrossing period is 7.7 s [38].
In order to compare the overturning moment from constrained wave simu-

lation and from Stream function, an equivalent wave height is defined for the
constrained wave simulations. The equivalent wave height is defined as the dif-
ference between the local minimum and the local maximum where the wave
constraint is defined. This is to be justified by the fact that near the con-
straint point the deterministic shape of the wave ( the mean shape of the wave)
dominates, see Figure 12.18.
Since every simulation is random, the equivalent wave height of the con-

strained waves will fluctuate from simulation to simulation. Only those simula-
tions whose equivalent wave height does not deviate more than plus or minus
5% percent from the maximum wave height of the stream function, are chosen.
The maximum response of each simulation is plotted in an empirical distribu-
tion function normalised with the maximum response obtained using the Stream
functions, see Figure 12.19.
As it can be seen the variation of the maximum overturning moment is quite

considerable, varying from 30% to 90% of the extreme response determined us-
ing the Stream function. This implies also that the equivalent wave height has a
rather weak correlation with the maximum response of constrained simulations
because the equivalent wave height is kept more or less constant. None of the
maximum overturning moments due to constrained waves reaches the level of
the maximum response obtained using Stream function waves. The maximum
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Figure 12.18: A constrained wave with the definition of the equivalent wave
height

overturning moment from 50 constrained waves is about 90% of the maximum
Stream function response. However, a direct comparison can be quite mislead-
ing, because one may directly conclude that the deterministic non-linear wave
yields a more conservative estimate of the extreme response.
One has to be aware that the constrained wave is based on the linear wave

theory and the water particle kinematics predicted is lower than the non-linear
wave theory. This means that the linear wave theory gives a lower estimate
of wave loads. If one takes the non-linearity of the waves into account for the
constrained waves, the Stream Function estimate of the extreme response may
not be necessarily higher than the extreme response predicted using constrained
simulations.
Figure 12.19 shows also that the variation of the structural response due to

a random wave field can be considerable and this is not taken into account by
the deterministic waves. On the other hand the non-linearity of the wave is not
taken into account by the constrained waves. A second order hybrid wave model,
that satisfies the nonlinear boundary conditions up to the second order has been
applied to determine the structural response of fixed offshore structures. It has
been concluded that the hybrid wave model yields smaller structural response
than the linear wave theory and the difference between these two theories is
not very considerable [25]. However, the structural response compared in the
mentioned study is taken from an offshore structure in deep waters. The effect
of the non-linear wave loading at the surface is negligible for a fixed offshore
structure in deep to intermediate water depth. Furthermore, the fixed offshore
structures in deep waters respond to the wave loading in a quasi-static way.
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Figure 12.19: The CDF of the overturning moment from 60 constrained waves

Hence the dynamic response constitutes a smaller part of the total response
Therefore results from deep water offshore structure design can not be directly
translated to the design of the support structures in shallow waters. In the
future, one may need to account for the non-linear waves in shallow waters to
obtain a more accurate description of the extreme response. For the present it
is assumed that the linear theory produces an adequate estimate of the extreme
structural response.

12.4 Combination of extreme wave and extreme
gust

12.4.1 Combination of the extreme wind gust and waves

In the previous sections of this chapter, the extreme gust loading and extreme
wave loading are treated as separate loads. In a real situation both wind and
wave loads occur simultaneously. The combination of wind and wave loading
is an important aspect of the design when using an external condition based
approach. Several combinations of extreme gust and wave loadings are analysed
here.
Two of the extreme load combinations specified in the GL design code for

offshore wind turbines concern the combined loads of extreme wind and waves.
These two extreme load combinations are shown in Table 3.2. The first load
case has a 3 second gust speed, with a reduced wave height. The second one
has a larger wave with 1 minute gust speed. The 50 year mean wind speed
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and significant wave height are determined from the marginal distributions of
the mean wind speed and significant wave height, respectively. The turbulence
intensity is 0.12. The zero upcrossing period is determined using Equation 3.11.
Load combination 1 is studied because it is assumed here that it produces the
most extreme response.
It has been shown that the load conditions specified in the Table 3.2 do not

produce the maximum response for the pitch regulated turbine. For this reason,
the stall regulated turbine is studied because these load combinations are more
likely to produce extreme responses for this type of turbines.
The extreme response will be determined using the deterministic IEC gust

model and non-linear stream function waves. The extreme responses are also
calculated with constrained gust and waves using the wave heights and gust
speeds

12.4.2 Comparison of different load combinations

Different combinations of the constrained wave and constrained wind gust are
carried out to study the influence of the different combination possibilities on
the extreme response of the OWT. The four combinations considered here and
the corresponding parameters are

1. A constrained wind with constrained wave with the maxima occurring
simultaneously (Ū = 34 m/s, Hs = 6.2 m, TZ = 7.7 s, Ugust = 46.2 m/s,
Hmax = 8.2 m).

2. Constrained wind and stochastic waves (Ū = 34 m/s, Hs = 6.2 m, TZ =
7.7 s, Ugust = 46.2 m/s).

3. Constrained wave and stochastic wind (Ū = 34m/s, Hs = 6.2m, TZ = 7.7
s, Hmax = 8.2 m).

4. Constrained wind and no wave (Ū = 34 m/s, Ugust = 46.2 m/s).

Ugust is the maximum gust speed and Hmax is maximum wave height. For
these 4 combinations 50 simulations are performed. The statistical descriptors
of the overturning moment at sea bottom are shown in Table 12.8. The different
combination criteria have no effect on the flap moment of the blade, hence it
is not shown here. The mean is the mean value of the maximum overturning
moments from 50 constrained simulations. Accordingly, the standard deviation
is the standard deviation of the maximum overturning moments.
As can be expected, the combination of the constrained wind and waves

results in the highest OTM. From the fourth combination case, only constrained
wind, it can be seen that the wind is a major load source, compared to the load
combination of constrained wind with stochastic wave, or constrained wave with
stochastic wind, there is a slight difference in the response of about 5%. The
load combinations 2 and 3 can be regarded as an application of the Turkstra’s
rule to the external load conditions. In case 2 one can consider the wind load
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Table 12.8: Statistics of the overturning moment for different combinations of
constrained simulations
Combination Mean Standard dev. Maximum

(107Nm) (107Nm) (107Nm)
Constrained wind Constrained wave 3.31 0.43 4.14
Constrained wind Stochastic wave 2.71 0.31 3.53
Stochastic wind Constrained wave 2.87 0.35 3.75
Constrained wind 2.53 0.24 3.28

Table 12.9: Extreme load cases specified in GL design codes
OTM (107Nm) Flap moment (106Nm) Delay (s)
3.24 0.99 4.20 second (out of phase)
3.20 1.12 3.20
3.30 1.10 2.20
4.03 0.92 1.20
4.07 1.09 0 (in phase)
3.47 1.04 1.20
3.40 1.01 2.20
3.34 0.96 3.20

as the principal load and the wave load as a secondary load and vice versa in
case 3. It can be seen that assuming concurrence of the two extreme loads
yield responses that are about 20% higher, on average, than the combinations
suggested by the Turkstra’s rule.

12.4.3 Time dealy between the extreme gust and extreme
wave

Until now the maximum of the wind gust and the maximum of the wave height
are assumed to occur simultaneously. This is rarely the case in reality. To
investigate the effect of the non simultaneous occurrence of the wind gust and
extreme wave, a time lag is introduced between the two maxima.
The distance between the two constrained signals varies from 0 to 20 seconds.

50 simulations are performed for each delay time step of 2 seconds. The maxima
of the overturning moments are taken from each constrained simulation. The
mean value of the maxima of the OTM is plotted against the time difference
between the two constrained signals in Figure 12.20. Errorbars of one standard
deviation is also shown.
It can be seen that the simultaneous occurrence gives the highest estimate.

The mean of the maximum overturning moment decreases slowly with an in-
creasing distance between the two maxima of the constrained wind and wave.
Considering the stochastic fluctuations of the simulations, the maximum re-
sponse converges slowly toward the load combinations 3 of Table 12.8. This
combination is a constrained wave with a stochastic wind. At a time difference
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Figure 12.20: Mean and one standard deviation of the maximum overturning
moment with different delays between constrained wind and wave.

of 20 seconds between the peak of wind speed and wave height, the mean value
of the maximum overturning moment is about 3% higher than that of the case
3 and about 8% higher than the case 2.
For comparison purposes, the effect of a time delay between the maxima of

the wind gust and wave height on the turbine response is also studied with the
deterministic load models. The parameters used for the deterministic models
are identical to those of the combination 1 in Section 12.4.2 For the stream
function wave the individual wave period is 9.2 s. Table 12.9 shows the extreme
flap moment and the OTM for different time delays between the maxima of
wind gust and waves. It can be seen that the delay has basically no influence
on the flap moment of the blade. For the OTM the increase of the maximum
response is very sharp when the delay between the maxima of the wind gust
and the wave approaches zero. Also the difference in the response for different
time delays is quite considerable, which can differ up to 25%.
Comparing the overturning moments from contrained simulations and deter-

ministic models (both with a time delay), it can be seen that the mean values
of maximum response using contrained models are much lower, especially for
simultaneous occurrence of the extreme wind gust and wave. For other time
delays, the deterministic models give an estimate that is about 10% higher than
the mean values of the maxima obtained with the constrained models. However,
one should be aware of the stochastic character of the response, since the values
compared here are the means of the maximum responses. The maximum of the
50 maxima of the OTM obtained with constrained simulation is slightly higher
than the maximum OTM determined using the deterministic models. However,
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Figure 12.21: Mean and one standard deviation of the maximum flap moment
with different delays between constrained wind and wave.

using the maximum of 50 contrained simulations as design value would be too
conservative, given the fact that the constrained gust and wave correspond to a
50 year event, and if this event occurs the probability that the maximum value
(from 50 constrained simulations) will be exceeded is very small.

For the blade, the issue of the combinations of constrained wave and con-
strained gust is not relevant since the influence of the wave on the blade response
is insignificant. This can be seen in Figure 12.21. It shows that the mean and
one standard deviation of the maximum flap moments for different delays be-
tween the extreme wind gust and wave. The variation with the time delay is
insignificant.

The maximum flap moment obtained using the deterministic IEC gust has
a similar value as the mean of the maximum flap moments using 50 constrained
gust simulations.

The maximum overturning moment using the deterministic gust and wave
models is considerably higher than the mean value of the maximum overturning
moments obtained using 50 constrained simulations of wind gusts and extreme
waves. The OTM obtained using deterministic models is about 2 standard
deviations above the mean of the maximum OTM obtained from 50 simulations
of constrained gusts and waves. However, the maximum overturning moment
from all the maxima of the OTM using 50 constrained simulations is slightly
higher than the OTM calculated using the deterministic models, about 2%.
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12.5 Application of the constrained simulations
The constrained gust simulation is applied to the pitch regulated wind turbine
but the operating condition of a stall controlled turbine is similar to the pitch
regulated wind turbine when the pitch controller is not active. In this case it
means the mean wind speed is below the rated wind speed. Thus, the conclusion
drawn for the pitch regulated wind turbine at 13 m/s can be applied to the stall
regulated wind turbine. The gust response of a stall regulated wind turbine will
increase with the gust amplitude and the mean wind speed. The most severe
gust loading will occur at wind speeds near the cut-out wind speed.
For pitch regulated wind turbines, the short duration gusts can be of more

relevance. For stall regulated wind turbines, the gusts amplitude will be more
dominant.
Using the constrained simulation one can obtain a long-term distribution of

the gust response. This distribution should be very similar to the long-term
response distribution determined by the MAX method, if wind gusts are the
principal mechanism that causes the extreme response in the wind turbulence.
However, this is not the case here. The gust response predicts a lower 99 per-
centile than the MAX method. Apparently there are other characteristics of
the wind turbulence that can cause extreme responses.
Furthermore it is a time consuming process to determine the distribution of

the extreme gust responses. Using 100 simulations of 60 seconds, 5 amplitudes
for each mean wind speed, the simulation time is not different than the required
simulation time for the MAX method. For this reason, it is better to use the
constrained gust model to improve the modelling of the extreme wind gust in
the external condition based method.
For a purely hydrodynamic loading environment, the constrained simulation

can represent a more time efficient method to obtain the extreme response
distribution due to extreme waves because the stationary period of the wave
is considerably longer than that of the wind. However, for a wind turbine
the wind can have a considerable contribution to the extreme response of the
support structure. The combination of both contrained processes means an even
larger number of simulations. Hence, the constrained simulation technique can
be applied to improve the current deterministic modellings of extreme gusts and
waves used in the external condition based design, since it includes stochastic
properties of the process which are not taken into account in the deterministic
models.



Chapter 13

Application of the methods

13.1 Introduction

In this chapter the response based approach and the external condition based
approach are applied to two types of wind turbines in an offshore environment,
one with a pitch control and the other one with a stall control (see also Sections
4.4. and 4.5). Using time domain simulations the responses of the offshore wind
turbines are obtained. Two responses are analysed here, the flap moment at
the blade root and the overturning moment of the support structure. The 100
year response is determined using three response based methods (MAX, POT
and Process models). The MAX method uses the maximum of each simulation,
the POT methods uses peaks of each simulation and the Process model uses the
statistical moments to predict the maxima of the response (see also Chapters 8, 9
and 10). The response obtained using the MAX method is used as the reference
value, to which the responses obtained using other methods are compared.

The uncertainty concerning the choice of distribution functions is taken into
account with a Bayesian analysis. This is applied to the responses of the pitch
regulated and stall regulated wind turbines. The uncertainty of the distribution
parameters is not taken into account because the influence of this uncertainty
is considerably less significant than the choice of distribution.

The external condition based approach is applied to the two types of wind
turbines as well. The extreme wind events are modelled with a steady wind, an
IEC extreme operating gust, or constrained wind gusts (Section 12.2). The ex-
treme waves are modelled with stream functions and constrained waves (Section
12.3). For the pitch regulated turbine, the extreme wave condition is replaced by
random waves because the extreme response for this turbine occurs at low sig-
nificant wave heights. Different combinations of the extreme wind and waves are
studied. The extreme responses determined with the external condition based
approach are compared with the responses obtained by the MAX method.

For an overview of the applications carried out here see Figure 13.1.

169
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Figure 13.1: Overview of the applications of the response based and external
condition based approaches.
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13.2 Response based models

13.2.1 Pitch controlled turbine

The extreme responses of this turbine occur around the rated mean wind speed
(13.7 m/s) [23]. For this reason not all the mean wind speeds need to be analysed
(Chapter 11). The number of mean wind speeds is reduced to the most severe
six for this pitch controlled turbine [20], ranging from 13 m/s to 18 m/s. For
the MAX method 50 simulations are carried out for each sea state, for the
POT method, 10 simulations and for the Process model, 5 simulations. All the
simulations have a length of 40 minutes. The different methods have different
requirements for the number of simulation and this has been analysed in Chapter
8, 9 and 10.
There are different combinations of the significant wave height and wave

periods for a given mean wind speed. From the selected mean wind speeds,
different combinations of wave parameters taken from the scatter diagram are
studied. The scatter diagram for the reference location is made from the data
of the NESS/NEXT hindcast database [72].
50 maxima of the maximum flap moments and overturning moments are

obtained from 50 simulations. This has been done for all the combinations
of Ū , Hs and Tz. The mean values of these 50 maxima of the flap moment
and overturning moment are shown in Figure 13.2). The mean values of the
50 maxima of the flap moment and OTM are normalised with respect to the
largest mean value of the 50 maxima from all the sea states. In this case the
largest mean of the response maxima occurs at a mean wind speed of 15 m/s.
The vertical variation of the response for a given mean wind speed represents
different combinations of wave parameters.
It can be seen from Figure 13.2 that the maxima of the flap moments is

hardly influenced by the variations of the significant wave heights and wave
periods, while the maxima of the overturning moment does vary with the wave
parameters. Nevertheless, the variation of the OTM in percentage is rather
small. This is due to the low mean wind speeds, where the significant wave
height is not large. For every sea state (defined by a mean wind speed, a
significant wave height and a wave period), a conditional distribution of the
maximum response is obtained. The number of different sea states that needs
to be taken into account for the long-term distribution of the maximum response
can be further reduced, due to the small variation of the maximum response with
the wave parameters.
For each mean wind speed the combination of wave parameters that pro-

duces the highest response is used to compute the long-term distribution of the
maximum response. In this case there are 6 conditional distributions. This re-
duction will introduce a slight overestimate in the long-term distribution of the
maximum response, although it will be insignificant because the response varia-
tion for different waves parameters at a given mean wind speed is small (shown
in Figure 13.2). The number of independent sea states used to extrapolate the
maximum response distribution to a period of one year is the number of hours
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Figure 13.2: Mean of the maximum responses of the pitch turbine for different
sea states (every point represents a combination of the mean wind speed, the
significant wave height and the zero upcrossing period); normalised with respect
to the maximum mean value at 15 m/s.

of occurrence of the sea states between the mean wind speed of 13 m/s and 18
m/s in one year.
The 3 parameter Weibull distribution is used to fit the maxima of the re-

sponse for the MAX method and the peaks for the POT method. The peak per
blade revolution counting is applied to the flap moment and the mean upcrossing
counting is applied to the OTM (Section 9.5).
The maximum response with a 100 year return period is determined from

the long-term distribution of the maximum response. The 100 year responses
are normalised with respect to the MAX estimate (see Table 13.1).
All the three response based methods give similar estimates with differences

that vary between 2% to 6%. The deviation in the 100 year flap moment is
slightly smaller than for the OTM.
Considering the fact that 50 simulations are used for the MAX estimate, 10

simulations for the POT estimates and 5 simulations for the Process models, it
is more likely that the MAX estimates have a slight advantage to capture rare
extremes that do not occur in 10 or 5 simulations. However, using the statistics
of local maxima (POT and Process models) one can still predict reasonably the
maximum response with a return period of 100 year. Moreover, the saving on the
simulation time by applying the POT and Process model is quite considerable
and 6% deviation can still be regarded as acceptable.
Within the Process method, the Gaussian model gives a quite close estimate
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Table 13.1: 100 year flap moment and overturning moment of the pitch regulated
wind turbine obtained with different response based methods, normalised with
the MAX estimate

100 year flap moment 100 year OTM
MAX 1.00 1.00
POT 0.98 0.95
Process (Gaussian) 1.01 0.98
Process (non-Gaussian) 0.98 0.94

with respect to the MAX estimate. The Gaussian model predicts an estimate
closer to the MAX estimate, compared with the non-Gaussian model with skew-
ness correction (Section 10.3). It is to be noticed that the Gaussian model uses
the Gumbel distribution to approximate the distribution of the largest response,
while the non-Gaussian model uses the Rice distribution. Gumbel distribution
produces a higher estimate than the Rice distribution and this does compen-
sate the correction of the positive skewness (which is taken into account in the
non-Gaussian model but not in the Gaussian model). The non-Gaussian model
with skewness and kurtosis is not applied because the variation of the kurtosis
is rather significant. A reliable estimate of the kurtosis is not guaranteed and
this can lead to large variation in the estimate of the maximum responses.
The extreme response of this pitch regulated wind turbine occurs during

operation. The maximum response of the wind turbine at standstill above the
cut-out wind speed is less than the maximum response during the operation.
However, one should be aware that the extrapolation of the extreme response
during standstill to a return period of e.g. 100 year can be larger than the
extrapolation of the extreme response during the operation. Although, it does
not apply to this turbine here, one should always consider the extreme responses
during standstill because different response characteristics and different external
conditions can make the extreme responses during standstill higher than during
operation.

13.2.2 Stall controlled turbine

For the stall controlled wind turbine the same number of simulations are carried
out to obtain the structural responses: 50 simulations for the MAX method, 10
for the POT and 5 for the Process model. The maximum response of this turbine
does not occur during the turbine operation but beyond the cut-out wind speed.
Using the scatter diagram, the sea states with wind speeds above the cut-out
wind speeds are selected, with mean wind speeds varying from 24 m/s to 34
m/s. For each mean wind speed, the response due to different combinations
of the significant wave heights and wave periods are analysed. For the stall
regulated wind turbine the same reference location as the pitch regulated wind
turbine is used.
From the 50 simulations, 50 maxima of the flap moment and OTM are
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Figure 13.3: Mean response of the stall turbine for different sea states (every
point represents a combination of the mean wind speed, the significant wave
height and the zero upcrossing period);normalised with respect to the maximum
mean value at 34 m/s.

obtained. Figure 13.3 shows the mean values of the the maxima of the flap
moment and of the OTM. The mean of the maximum responses are normalised
with the largest mean value of the maximum responses from all the considered
sea states. In this case the largest mean value of the maximum response comes
from the mean wind speed of 34 m/s. The variation of the mean of the max-
imum response for a given mean wind speed represents different combinations
of significant wave heights and wave periods.

As can be seen, the variation of the mean flap moment is not sensitive to
the variation of the significant wave heights and wave periods. Due to the
larger range of the mean wind speeds that are taken into account (24-34 m/s
compared to 13-18m/s), the variation of the responses is also much larger than
the variation of the responses shown for the pitch regulated turbine (see Figure
13.2), since the thrust forces increase quadratically with the mean wind speed.
Also note that the sea states considered here have considerably lower occurrence
frequencies than the occurrence frequencies of the sea states considered for the
pitch regulated turbine. This means also that one may need to take a closer
look at the conditional distributions of the response because the number of sea
states N has an influence on the determination of the long-term distribution
(see Section 11.3).

The maximum responses with a return period of 100 year are determined
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Table 13.2: 100 year flap moment and overturning moment of the stall regulated
wind turbine, obtained with different response based methods, normalised with
the MAX estimate

100 year flap moment 100 year OTM
MAX 1.00 1.00
POT 0.98 0.94
Process (Gaussian) 1.04 1.05
Process (non-Gaussian) 1.01 0.96

with different response based methods. The 3 parameter Weibull distribution
is used to fit the maxima and peaks of the response. The peak per blade
revolution counting is applied to the flap moment and the mean upcrossing
counting is applied to the OTM for a sea state. For every sea state, a conditional
distribution of the maximum response is determined. Taking the occurrence
frequencies of these sea states into account, the long-term distribution of the
maximum response can be calculated. The number of independent sea states
is equal to the hours of occurrence of the sea states considered in the analysis,
i.e. all the sea states are independent. The number of independent sea states
is then used to extrapolate the maximum response distribution to a period of 1
year.
Two process models are used, the Gaussian model and the non-Gaussian

model with skewness correction. The 100 year responses obtained using different
response based methods are shown in Table 13.2.
For this stall regulated turbine, the variation of the estimates of the 100 year

flap moment and OTM is not much different than for the pitch regulated wind
turbine, varying from 2% to 5% with respect to the MAX estimates. In this
case it can be seen that the MAX estimate does not necessarily give the highest
estimate.
The low number of simulations (5) and the large variation of the higher

statistical moments can have considerable influence on the long-term estimates
using the Process method. When the non-Gaussian model with a skewness
and kurtosis correction is applied, this model gives an estimate of the 100 year
flap moment that is about 10% above the MAX estimate. For the 100 year
OTM, the skewness-kurtosis corrected model yields an estimate that is about
2% below the MAX estimate, which is closer to the MAX estimate than the
skewness corrected model.

13.2.3 Choice of Distributions/ Bayesian analysis

Pitch regulated turbine

It has been shown that the uncertainties concerning the distribution types is
larger than the uncertainties concerning the distribution parameters (Section
8.3). The uncertainties of the choice of distribution has been studied for the
pitch regulated wind turbine using 3 distributions, the Weibull, Gumbel and
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Figure 13.4: Fit of the maxima of the flap moment of the pitch regulated turbine
with 6 distribution functions.

the Normal distribution. To ensure that these distributions cover reasonably
the data in the probability space, additional distributions are used. The added
distributions are the Log-Normal, 3 parameter Gamma and the Exponential
distribution (see Appendix A for a list of the distribution functions). The 50
maxima of the flap moment and overturning moments are used. The least
squares method is applied to fit the cumulative distribution functions.
Figure 13.4 shows the maxima of the flap moment of the most severe sea

state fitted to 6 different distributions plotted in a Weibull probability scale.
It can be seen that the chosen distributions cover the data reasonably well. It
is important to choose the distribution functions such that the probability of
the data are covered from both sides1. Three distinct groups can be observed.
The Normal and Log-Normal distribution differ only slightly from each other
and belong to the light tail distributions. The Weibull, Gamma and Gumbel
distributions form the group that capture the tail of the data satisfactorily. The
Exponential distribution has the heaviest tail of all the distributions and it has
a poor fit. Inspecting the Figure 13.4 visually, one can see that the Weibull,
Gamma and Gumbel distributions are more likely to represent the distribution
of the maxima of the flap moment.
Figure 13.5 shows the same distribution functions extrapolated beyond the

data range of the maximum flap moment obtained by simulations. It can be
seen that the 3 parameter Gamma, Weibull and the Gumbel distribution are

1 In Figure 13.4, the Exponential distribution covers the data from below and the Normal
distribution covers the data from above in the tail region.
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Figure 13.5: Tails of the fits of the maxima of the flap moment of the pitch
regulated turbine with 6 distribution functions.

almost identical up to a cumulative probability of 0.99. From there the tails of
these 3 distributions start to diverge. The Gumbel distribution gives a slightly
higher estimate of the 100 year flap moment than the Weibull and Gamma
distribution. The Exponential distribution has the heaviest tail. The Normal
distribution family gives the lowest estimates. Goodness of fit tests are applied
to check whether the chosen distributions fit the data in a reasonable way.
The K-S and A-D tests (see Section 7.3.2) are applied to the upper part of
the distributions with a cumulative probability of more than 0.5. This limit is
chosen to avoid the rejection of the distribution by the goodness of fit tests, since
the deviation at the lower part of the distributions can be quite considerable.
This can be justified by the fact that the area of interest is the upper part of
the distributions. The distributions are not rejected by the goodness of fit tests
with a significance level of 5%.
To take into account the uncertainty of the distribution functions, the Bayesian

analysis is applied. The Bayesian weights of the different distribution functions
are calculated and shown in Table 13.3. The 100 year flap moments are nor-
malised with respect to the Weibull estimate. It can be seen that the large part
of the probability rests on the Weibull and Gamma distributions, Gumbel takes
a smaller part of the probability, while the rest of the distributions has practi-
cally no influence on the long-term estimate. The Bayesian estimate is virtually
identical to the Weibull estimate. In this case, the outcome of the Bayesian
analysis confirms to a large extent the conclusion of the visual inspection.
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Table 13.3: participation factors and 100 year return values of the distribution
functions of the flap moment of the pitch regulated turbine using Bayesian
analysis
Distribution participation 100 year
Gumbel 15% 1.03
Normal 0.7% 0.93
Weibull 34.2% 1.00
Gamma 48.6% 1.01
Exponential 0 % 1.08
Lognormal 1.2% 0.94
Bayes 1.005

Table 13.4: participation factors and 100 year return values of the distribu-
tion functions of the overturning moment of the pitch regulated turbine using
Bayesian analysis
Distribution participation 100 year
Gumbel 2% 1.05
Normal 0.3% 0.93
Weibull 10.3% 1.00
Gamma 86.6% 1.00
Exponential 0 % 1.12
Lognormal 0.5% 0.94
Bayes 0.997

Table 13.4 shows the result for the OTM for the same wind turbine. The
overturning moments are normalised with respect to the Weibull estimate.
Again, the dominance of the Weibull and Gamma distribution can be clearly
observed. The 100 year OTM is almost identical to the Weibull estimate. As
can be seen the Bayesian analysis provides directly a formal selection criterion
of the distribution functions. In these cases using the Weibull distribution to
obtain the estimates of the 100 year responses is sufficient, taking other distrib-
utions into account will not affect the estimates of the 100 year responses. Even
so, the Gumbel, Gamma and Weibull distribution give very different estimates
at the low exceedence probability region, the difference becomes significant only
at a very large cumulative probability (for example, 0.999999, which represents
a return period of ca. 4000 years, in Figure 13.5) and this cumulative proba-
bility corresponds to a return period much larger than the return period used
for design purposes, e.g. 100 years. However, this can not be generalised and a
Bayesian analysis of the distributional choice is always recommended.

Stall regulated turbine

The Bayesian analysis is applied to the uncertainty of the choice of the dis-
tributions for the maxima of the flap moment and overturning moment of the
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Table 13.5: participation factors and the 100 year flap moment using Bayesian
analysis; stall regulated turbine
Distribution participation 100 year
Gumbel 1% 1.01
Normal 0.2% 0.98
Weibull 78% 1.00
Gamma 20% 1.02
Exponential 0 % 1.09
Lognormal 0.8% 0.98
Bayes 1.009

stall regulated wind turbine. 50 maxima are obtained through time domain
simulations and the following sea state parameters, the mean wind speed is 34
m/s, the significant wave height is 5.75 m and the zero upcrossing period is 7.31
s. The six distributions used here are the Normal, Log-Normal, 3 parameter
Weibull, 3 parameter Gamma, Gumbel and the Exponential distribution Ta-
ble 13.5 shows the 100 year flap moment estimated using different distribution
functions and the Bayesian estimate. The values are normalised with the 100
year flap moment determined by the Weibull distribution.
As can be seen the Weibull and Gamma distribution have taken the majority

of the contribution to the Bayesian estimate. The influence of the rest of the
distributions is insignificant. The K-S and A-D goodness of fit tests are applied
to all the distributions with a significance level of 5%. The Exponential distri-
bution is rejected by the goodness of fit tests. Nevertheless it is included in the
Bayesian analysis for the sake of completeness and indeed the Bayesian analysis
regards the Exponential distribution as an unlikely distribution to describe the
maxima of the flap moments.
The dominance of the Weibull and Gamma distribution can be also observed

for the 100 year overturning moment, shown in Table 13.6. In this case, a
visual inspection shows that the Weibull and Gamma distributions fit the data
reasonably well (not shown here). The A-D and KS reject the Exponential
distribution as a likely distribution for the maxima of the overturning moment.
An advantage of applying a Bayesian analysis is that the unprobable distri-

butions, such as the Exponential distribution, are automatically disregarded by
the Bayesian analysis. In such case, the Bayesian analysis acts like a built-in
quantitative goodness of fit test without incurring extra computational efforts.

13.3 External condition based models

13.3.1 External conditions: GL approach

The response based approach proposes a more rational methodology for the de-
termination of the extreme responses in the design process of an offshore wind
turbine. The response based approach is indeed a logical step toward a prob-
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Table 13.6: participation factors and 100 year overturning moment using
Bayesian analysis; stall regulated turbine
Distribution participation 100 year
Gumbel 0.5% 0.99
Normal 0% 0.93
Weibull 54% 1.00
Gamma 45% 1.00
Exponential 0 % 1.04
Lognormal 0.5% 0.94
Bayes 1.00

abilistic design, however, it requires a detailed knowledge of the offshore wind
turbine, in order to determine correctly the response. This may present a prob-
lem for the response calculation in the early design stage where such information
is simply not available. Furthermore, the computational effort required for the
response based approach represents an obstacle hindering a wider acceptance of
the response based methods. For these reasons, the design codes usually specify
the external conditions, which are assumed to induce extreme responses. In
this section, the external conditions approach is applied to the two wind tur-
bines. The extreme response determined with the external condition approach
is compared with the extreme response obtained by the MAX method.
Sea state parameters: Ū , Hs and Tz
The external condition based approach starts with the specification of the

environmental conditions in which extreme responses will occur. The environ-
mental condition is specified by three sea state parameters, the mean wind speed
Ū , the significant wave height Hs and the zero upcrossing period Tz. For the
pitch regulated wind turbine the extreme response occurs during the turbine
in operation, while for the stall regulated turbine, the extreme response occurs
in the extreme wind situations with the turbine in standstill. Hence, the mean
wind speeds defined for these two turbines are different. For the pitch regulated
wind turbine the mean wind speed used is 13 m/s. This is the mean wind speed
where the extreme gusts produce the maximum response. For the stall regulated
wind turbine, the extreme mean wind speed with a 100 year return period is
used. The 100 year mean wind speed is given for different wind turbine classes
in the GL design code [43]. The turbine class I is chosen for the stall regulated
turbine. The 50 year extreme mean wind speed2 for the turbine class I is 50
m/s.
The significant wave height and the zero upcrossing period have to be deter-

mined for the external condition based approach as well. GL does not specify
a distribution for the significant wave height and the zero upcrossing period.
For the pitch regulated turbine the wave parameters are taken from the scatter
diagram. From all the sea states with a mean wind speed of 13 m/s, the one

2A 100 year wind speed can be converted to a 50 year wind speed by reducing the speed
by 3% [43]. Conversely a 50 year wind speed can be converted to a 100 year wind speed.
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Table 13.7: Different models of extreme gusts and extreme waves for the external
condition based approach; load combination 1

pitch regulated turbine stall regulated turbine
model 1 X Steady wind (coherent)

(Ugust = 63.3 m/s)
X Stream functions

(Hmax = 8.3 m, Twave = 9.22 s)
model 2 IEC gust (coherent) IEC gust (coherent)

(Ū = 13 m/s, Ugust = 23 m/s) (Ū = 50 m/s, Ugust = 63.3 m/s)
Random wave Stream functions
(Hs = 2.5 m, Tz = 5.5 s) (Hmax = 8.3 m, Twave = 9.22 s)

model 3 Constrained gust (not coherent) Constrained gust (not coherent)
(Ū = 13 m/s, Ugust = 23 m/s) (Ū = 50 m/s, Ugust = 63.3 m/s)
Random wave Constrained wave
(Hs = 2.5 m, Tz = 5.5 s) (Hs = 6.3 m, Hmax = 8.3 m,

Tz = 7.7 s)
Ū =mean wind speed Hs =significant wave height
Ugust =maximum gust speed Hmax =maximum wave height
Tz =zero upcrossing period Twave = individual wave period

with the highest significant wave height is selected. For the stall regulated wind
turbine, the 100 year significant wave height is determined from the marginal
distribution of the significant wave heights. The zero upcrossing period can be
determined with Equation 3.11. The problem for this equation is the choice of
the mean wind speed. As shown in Section 3.5, the 100 year mean wind speed
from the GL guideline is much larger than the 100 year mean wind speed from
the environmental contour line. Using the GL extreme mean wind speed in
combination with Equation 3.11 would result in a larger wave period. For this
reason the wave period is calculated with Equation 3.11 using the 100 year mean
wind speed with the 100 year significant wave height (see first line of Table 3.1).
Maximum values: Hmax, Twave and Ugust
From the mean wind speed, significant wave height and the zero upcrossing

period one can arrive at a gust speed Ugust averaged over a short period, for
example 3 seconds, and a maximum wave height Hmax. In the GL guideline [43]
two combinations of the wind gust with the maximum wave height are given.
The individual wave period associated with a deterministic wave3 is calculated
using Equation 3.17. The turbulence intensity is 0.12 according to GL. The two
extreme load combinations are given in Table 3.2 and the numerical values are
given in Table 3.3. This table is valid for the stall regulated wind turbine. Load

3 In the load combinations of the GL guideline the zero upcrossing period is not specified

but an individual wave period is given, Twave=11.1·
q

Hmax
g

;Hmax is the maximum individual

wave height and g is the earth acceleration of gravity. This formula is not used in this study,
because it applies to deep water waves.
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Table 13.8: 50 year responses of the pitch regulated wind turbine with GL com-
binations of extreme external conditions , normalised with the MAX estimates

Pitch turbine load combination 1
Flap moment ratio Overturning moment ratio

model 1 X X
model 2 0.80 1.2
model 3 0.81 0.82

combination 1 refers to the 3 second gust speed with a reduced extreme wave
height, while load combination 2 refers to a higher extreme wave height with 1
minute gust speed. The maximum response from the two load combinations is
analysed. One needs to take into account these two combinations because it can
not be determined beforehand which combination will give the most extreme
response.

For the pitch regulated wind turbine, an alternative extreme external con-
dition is defined. As mentioned before, the chosen mean wind speed is 13 m/s,
the turbulence intensity is 0.12. The extreme external condition here is the 50
year operating gust using the IEC gust model4 [53]. The wave condition at the
given mean wind speed has only marginal influence on the response, for this
reason random wave simulations are combined with the 50 year extreme oper-
ating gust. The response of the extreme operating gust is compared to the 50
year extreme response obtained with the MAX method.

Three different models of the extreme gust speed and extreme waves are
applied to the pitch and stall regulated wind turbines. These models are sum-
marised in Table 13.7 for the load combination 1. There is no model 1 for the
pitch regulated wind turbine because this load combination is not relevant for
the pitch regulated turbine. The maximum response due to a steady wind is
much lower than due to an extreme operating gust because the controller is able
to adjust to the constant gust wind speed. For this reason this model can be
disregarded. Load combination 2 is not shown because the results show that the
maximum response from load combination 2 is always lower than the maximum
response from load combination 1. Notice also that the constrained simulation
is applied to the maximum value and not to other characteristics of the wind
gust or waves, e.g. rise time.

The extreme responses obtained using the different models are shown in
Table 13.8 and Table 13.9, for the pitch controlled and stall controlled wind
turbine, respectively. Only the load combination 1 is shown here. The results
shown in the tables will be discussed in detail in the following sub-sections.

4To calculate the gust speed Ugust one needs to know the turbulence intensity. IEC does no
have a specification for the turbulence intensity of offshore locations, thus the GL turbulence
intensity for offshore locations is used (0.12).
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Table 13.9: 100 year responses of the stall regulated wind turbine with GL com-
binations of extreme external conditions , normalised with the MAX estimates

Stall turbine load combination 1
Flap moment ratio Overturning moment ratio

model 1 1.12 1.53
model 2 1.41 1.94
model 3 1.18 1.36

13.3.2 Model 1/ steady wind

Stall controlled wind turbine

The first line of Table 13.9 shows response ratios for the the load combination
1.The values are normalised with respect to the MAX estimates. The extreme
flap moment determined from a 3 second wind gust with a reduced wave height
is 12% higher than the MAX estimate, while the OTM is about 50% higher
One can say that the dynamic response plays an important role in the ex-

treme response, taken into account that the most severe mean wind speed is 34
m/s in the MAX estimate. The 50 year mean wind speed of 50 m/s specified for
the wind turbine class 1 is almost 50% higher, while the extreme flap moment
to the steady wind model is only about 12% higher than the MAX estimate.
The 1 minute gust speed (load combination 2) is irrelevant because it produces
lower extreme response than the load combination 1 and is not analysed here.
The magnitude of variations for the overturning moment is in the same order

as that of the flap moment. The MAX estimate of the OTM is considerably
lower than those of the GL load cases. One of the reasons is that a uniform wind
field produces a larger thrust to the tower and since this thrust force contributes
significantly to the OTM, it produces also a larger OTM.

13.3.3 Model 2/ IEC gust

Pitch controlled wind turbine

The 50 year extreme operating gust produces an extreme flap moment in the
wind turbine, although this extreme flap moment is lower than the maximum
flap moment estimated with the MAX method. The ratio between the two es-
timates is 0.80 (see the second line of Table 13.8). Observe that the maximum
response to the wind gust occurs at a mean wind speed of 13 m/s, while for the
response based approach the most severe mean wind speed is 15 m/s. Appar-
ently, there are other stochastic properties of the wind that can produce higher
responses and these properties are not captured by the extreme operating gust,
neither the deterministic nor the constrained gust models (model 3).
The OTM predicted in this case is considerably larger than the MAX esti-

mate, the ratio between them is 1.2. The reason is that a coherent IEC gust
produces a higher thrust. This thrust force contributes considerably to the
overturning moment. The second load combination (extreme wave with a one
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minute gust speed) is not relevant for this wind turbine, since the wave condition
is mild at the given mean wind speed of 13 m/s.

Stall controlled wind turbine

In this model, the steady wind is replaced with the deterministic gust model
from the IEC with a maximum wind speed equal to the 3 second gust speed.
The mean wind speed is the 100 year mean wind speed from the wind turbine
class one.
For the load combination 1, the ratio of the OTM responses between the

deterministic gust model and the MAX estimate is 1.94. For the flap moment
the ratio is 1.41 (see second line of Table 13.9). As can be seen the combination of
the deterministic gust and stream function waves leads to a considerably higher
estimate of the OTM response than the MAX method. It is to be noticed that
the IEC gust uses a coherent wind over the height, thus the tower thrust is
higher than in a spatially stochastic wind field. This higher thrust leads also to
a higher OTM.
Load combination 2 gives lower responses for the flap moment and OTM

than the load combination 1, thus it need not to be considered here.

13.3.4 Model 3/ constrained gust

Pitch controlled wind turbine

For the pitch controlled turbine, a constrained wind gust is combined with a
random wave loading. 50 constrained simulations are carried out. The con-
strained wave is not applied due to the low significant wave height. Moreover,
the contribution of the wave loading to the overturning moment is insignificant
at a mean wind speed of 13 m/s.
This model yields a blade response that is lower than the MAX estimate. The

ratio between the mean of 50 maxima of the flap moment from 50 constrained
gust simulations and the MAX estimate is 0.81 (see third line of Table 13.8). As
observed already in the previous section with the deterministic gust, the extreme
gust response occurs at a mean wind speed5 of 13 m/s. Apparently, there are
other stochastic properties of the wind that can produce higher response in
the blade and these properties can not be reproduced solely by the constrained
gusts (on the maximum value). One of the possible explanations is that the pitch
controlled turbines are more vulnerable to gusts with short rise time, while the
mean gust shape used here has a rather long rise time. Hence, the controller
has enough time to filter the gust loading.
The OTM predicted in this case is also lower than the MAX estimate, the

ratio between the mean of the 50 maxima of the OTM obtained from 50 con-
strained simulations and the MAX estimate is 0.82. As mentioned, the tower

5The maximum response of the pitch regulated wind turbine occurs at a mean wind speed
of 13 m/s using contrained gusts as input, while using the stochastic wind field simulations
the maximum response occurs at a mean wind speed of 15 m/s.
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thrust for spatial gusts is significantly lower than, for example, the deterministic
IEC gust which is a coherent gust. Load combination 2 is not analysed because
it is not relevant for this pitch regulated wind turbine.

Stall controlled wind turbine

50 constrained simulations of extreme wind gusts and extreme waves are carried
out. For the load combination 1, the ratio between the mean of the maximum
flap moments of the contrained simulations to the MAX estimate is 1.18. The
ratio between the mean of the maximum overturning moments to the MAX
estimate is 1.36 (see third line of Table 13.9). The higher estimate of the extreme
response of the external condition based approach is due to the higher mean
wind speed prescribed by the GL guideline for the turbine class 1.
The constrained simulations are comparable to short pieces of random simu-

lations, with the exception that the maximum of the wind speed and wave height
can be determined beforehand. The stochastic properties of the load signals are
reproduced, if the number of constrained simulations is large enough. In the
case of the stall regulated turbine, the sea state with the highest mean wind
speed determines the 100 year response. With 50 constrained simulations the
stochastics of the external loads are partially reproduced giving an estimate of
the flap moment that is closer to the MAX estimate than the deterministic IEC
gust models. For the wave loads, 50 simulations may not be sufficient because
the stationary period of waves is longer than the stationary period of winds.
The load combination 2 is insignificant because it does not produce a higher

response than the load combination 1 and is not analysed here.

13.3.5 Comparisons of the response based and external
condition based approaches

The extreme response from using the different models of extreme winds and
waves are shown in an overview figure. The load combination 1 is considered,
that is, a 3 second gust with a reduced wave height. The load combination 2
gives always a lower estimate of the extreme response, hence it does not need
to be analysed here. Figure 13.6 shows the extreme flap moment, normalised
with the MAX estimate and Figure 13.7 shows the OTM, also normalised with
the MAX estimate.
As far as the flap moment is concerned, it can be seen that the external

condition based approach gives the stall regulated wind turbine overall higher
response than the response based approach of the MAX method. This is mostly
due to the higher mean wind speed as well as the gust speeds assigned by
the GL design code to the wind turbine class 1. With the constrained wind
gust and waves, the estimates are closer to the MAX estimates partly because
constrained simulations contain stochastic background which represents a more
realistic external load condition. The steady wind approach of the Model 1
gives also an estimate that is very close to the MAX estimate, despite the large
difference in the wind speed.
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Figure 13.6: Ratio of the extreme flap moment obtained with different extreme
gust and wave models. (normalised with the MAX estimate).

As can be seen also in Figure 13.6, the external condition based approach
does not always give a more conservative estimate as generally believed. The
extreme flap moment determined by the external condition approach lies 20%
below the MAX estimate, for the deterministic and stochastic gust models.
The response characteristics play an important role in the determination of the
extreme responses. For wind turbines, the influence of the controller on the
response is crucial and needs to be taken into account accordingly.
The coherent models of the wind gust (model 1 and 2) produce a much

higher response ratio for the OTM than for the flap moment (compared to
the MAX estimate). The difference in the estimate of the extreme OTM is
quite considerable for the stall regulated turbine. The OTM of the external
condition based approach can be twice as much as the MAX estimate. Notably,
the external condition based approach using constrained gusts does not give a
higher response than the MAX method for the pitch controlled turbine. This
is due to the smaller contribution of the blade to the thrust on the tower. The
IEC gust induces a higher OTM of the pitch regulated turbine than the MAX
estimate because the coherence of the gust produces a higher thrust.
As mentioned before the gust response for the pitch controlled wind turbine

may be less relevant because of the ability of the controller to filter the gusts.
Hence, the response based approach seems to be more suitable to determine
the extreme response because the stochastic properties of the wind that lead to
extreme responses may not be fully reproduced by the gusts constrained on the
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Figure 13.7: Ratio of the extreme OTM obtained with different extreme gust
and wave models. (normalised with the MAX estimate).

maximum value. Although, it has to be noted that the constraint is imposed
on the maximum value.
The difference in the computational effort between the two approaches is very

significant. Response based approach requires a large number of simulations
and the simulation length is also considerably longer than the simulation length
required for the external condition based approach. The external condition
based approach is suitable for the preliminary design stage, while the response
based approach is recommended for the final design stage.
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Chapter 14

Conclusions

14.1 General conclusions

The current approach to determine the extreme response of an offshore wind
turbine is based on specifying the extreme external conditions. As has been
shown, an extreme external conditon does not necessarily lead to an extreme
response of the wind turbine.
Physically speaking, the response based method should be preferred because

it is a consistent approach which treats external conditions without making any
assumption on the response. However, the computational effort is considerable
for the response based approach because of the large number of external con-
ditions. Moreover, it is difficult to specify this method universally in a design
guideline because the response characteristics of the wind turbines are very di-
verse. An advantage that the external condition based approach enjoys is that
it can be formulated independently of the wind turbines.
However, it is not necessary to take all the external conditions into account

since the region of interest is the upper tail of the distributions. Furthermore,
applying the response based approach one can achieve a more efficient structural
design of an offshore wind turbine.
The current design practice uses deterministic models of an extreme wind

gust and extreme waves to determine the exteme responses. The disadvantage
of the deterministic models is that they do not include the stochastics of the
process. Stochastic models of the extreme wind gust and extreme waves are
introduced to improve the modelling of the wind gust and extreme waves. Ver-
ification with measurements has shown a good agreement with the theoretical
models.
The stochastic models generally give a lower estimate of the extreme re-

sponse than the deterministic models. This is partly due to the fact that the
deterministic gust model assumes a total coherence of the wind speed for the
whole rotor swept area, while the stochastic gust model takes into account the
spatial variation of the wind speeds at different locations. However, the vari-

189
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ation of the extreme response depends strongly on the control concept of the
wind turbine.
A direct comparison between the response based method and the external

condition based method has to be done with caution because the extreme re-
sponses estimated by these two approaches are fundamentally different. Quan-
titatively, the external condition based approach generally yields a higher ex-
treme response than the response based approach, for the stall regulated wind
turbine. For the pitch regulated wind turbine, the external condition based ap-
proach gives an estimate of the extreme response that is generally lower than
the response based methods. The controller plays an important role. The most
severe load situation occurs during the operation with an active controller for
the pitch regulated turbine. For the stall regulated wind turbine, the most
severe load situation is at standstill with high mean wind speeds.
The general conclusions drawn above should be judged in light of the assump-

tions and limitations described in Chapter 2. The variation of the data obtained
using simulations may have considerably smaller variation than the real data
from measurements. Note also that in the real loading situation, many extreme
responses arise in non-stationary conditions. The main objective of this thesis
is to provide a general methodology for a more efficient structural design of an
offshore wind turbine. The methods described here can be extended to include
more stochastic parameters such as the turbulence intensity or other extreme
load cases.

14.2 Specific conclusions

In this section specific conclusions are drawn for different subjects treated in
this thesis.
External conditions
The hindcast data provides a useful source of information which can be used

for the estimation of the environmental contour and a scatter diagram. One
can apply the joint probability approach to determine the extreme mean wind
speed, the extreme significant wave heights and the wave period. However,
the estimates of the 100 year wind and waves using joint statistics or marginal
statistics show insignificant difference for this data set (see Table 3.1).
The number of stochastic variables are reduced after a sensitivity study. The

mean wind speed, the significant wave height and the zero upcrossing period
are chosen as stochastic variables. Although, the variation of the turbulence
intensity has also a considerable influence on the rotor response, it is not taken
as a stochastic variable because the hindcast data do not have any information
on the variation of the turbulence intensity for the chosen location.
MAX, POT and Process methods
The MAX method is used as a reference value for the POT and Process

methods. Applying the MAX method, 50 simulations can be regarded as suf-
ficient for the estimate of the extreme response distribution. The simulation
length can vary, depending on which process determines the extreme response.
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40 minutes is regarded as an acceptable simulation length to account for the
load variations of the wind and the waves.
The POT model and Process model show results within a maximum varia-

tion of around 10% of the refence MAX estimate (using 50 simulations). The
recommended number of simulations for the POT method is 10-15 and for the
Process method is 5-10 in order to reach a similar degree of accuracy as the
MAX estimate.
For the blade response, the peak per blade revolution counting is to be

preferred to the mean upcrossing counting while for the response of the support
structure the mean upcrossing counting is to be preferred. The three parameter
Weibull distribution is suitable to model both the maxima of the simulations as
well as the POT of the simulations.
For the response considered in this study, the flap moment at the blade root

and the overturning moment at the base of the tower, the Gaussian process
model gives an estimate of the extreme responses with less than 5% difference
to the MAX estimate. This is because the Gumbel distribution is the asymptotic
approximation of the Rice distribution for a large number of maxima. The use
of the Gumbel distribution compensates the underestimate due to the positive
skewness, which is not taken into account in the Gaussian model. In the non-
Gaussian models a correction for the skewness and kurtosis is applied. The
skewness correction improves the predicted estimate of the extreme response,
i.e. a smaller difference to the MAX estimate. The inclusion of the kurtosis
correction does not necessarily bring the estimate closer to the MAX estimate,
due to the larger variation of the kurtosis of the response time series.
Extrapolation
For the extrapolation of the response distribution, the issue of the indepen-

dence of the sea states is not significant, if the response of interest has a return
period of, say, more than 20 years. The response of a much shorter return period
will be overestimated if the independence of the sea states is assumed.
It is not necessary to take all the sea states into account to determine the

long-term distribution of the response. In the presence of few dominating condi-
tional distributions, the conditional distributions from mild sea states will have
no effects on the tail of the extrapolated distribution. If the distance between
the conditional distributions is large (e.g. the location parameters are far away
from each other), it is even sufficient to take into account only the most severe
conditional distribution.
Constrained simulations
The constrained gust does not necessarily produce an extreme response on

the pitch regulated turbine when the controller is active, because the controller
can filter the gust loads. The centre of gusts has some influences on the blade
response (maximum variation ∼ 25%). However, the distribution of the gust
centre in a spatial gust remains largely unknown. Hence, the influence of the
gust centre of a spatial gust on the response can not be taken into account
properly yet. The verification of the mean shape of the one point gust, i.e. the
deterministic part of the constrained gusts, with measurements is very satisfac-
tory.
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Load combinations
A time delay between the maximum of the wind gust speed and the extreme

wave height decreases the maximum response (assuming that the maximum
wind speed and the maximum wave height are the governing parameters of the
external loadings). This decrease is very sharp for the deterministic models of
the extreme wind gust and extreme waves.
For a time delay between a constrained wind gust and wave, the decrease of

the response is less significant (20%, on average). After 20 seconds of delay be-
tween the maximum wind gust and the maximum wave, the maximum response
approaches the value obtained by applying the Turkstra’s rule for a load com-
bination. Thus, one can choose the simultaneous occurrence of the constrained
wind and wave maxima without incurring too much conservatism in the design.
Statistical uncertainties
The statistical uncertainties of the extreme responses are taken into account

with a Bayesian analysis. In this case, the effect of the uncertainties of the
distribution parameters in the long-term distribution is marginal using a non-
informative prior in a Bayesian analysis. The choice of distribution models
has a much more significant effect on the long-term distribution. One can use
visual inspections by plotting the data in different probability scales and use
formal goodness of fit tests to select the suitable distributions, although it is
not always possible to make an unambiguous choice of the distribution model.
In that case, a Bayesian analysis can be applied to take the uncertainty of the
choice of distribution models into account.
The distribution parameters determined using the Maximum Likelihood Es-

timate is less susceptible to outliers. Before fitting the data to distribution
models, they should be checked for outliers (e.g. due to simulation error) be-
cause it can have considerable influence on the estimates of the skewness and
kurtosis, affecting the fit of the distribution function and the estimates of the
Process method.

14.3 A proposed approach

Based on this study one can formulate the following approach to be applied to
determine the distribution of the extreme response of an offshore wind turbine.
Response based methods
The stochastic parameters that should be taken into account are the mean

wind speed, significant wave height and the wave period. The conditional dis-
tribution of the response can be obtained using the Process method with 6
simulations and a non-Gaussian model using a skewness correction. A simula-
tion length of 40 minutes should be used. The distribution of the local maxima
is modelled by the Rice distribution.
The advantage of the Process method is that one does not need to consider

the choice of the distribution model because the distribution of the local maxima
is derived from a theoretical basis.
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The number of sea states that needs to be taken into account for the long-
term distribution of the response depends on the response characteristics of
the turbine. One should carry out simulations for the sea states that can lead
to extreme responses of the turbine, and based on the mean of the maximum
response the 3 most severe distributions can be selected. This is usually sufficient
since the region of interest is the tail of the distribution.
The response method is recommended for final design of a wind turbine.
External condition based methods
For the external condition based approach, constrained simulations represent

a more realistic load representation than the deterministic models, for the stall
regulated wind turbine. 50 constrained simulations of wind gust and extreme
waves of simultaneous occurrence should be carried out. The mean value of
the extreme response obtained by 50 simulations can be used to represent the
design response (with a return period of the given external condition).
For the pitch regulated wind turbine it is not recommended to use the ex-

ternal condition based approach, since the wind characteristics that can lead
to extreme responses of the wind turbine may not be fully represented in sim-
ulations with the constraint on the maximum value. If the external condition
based approach is to be applied, one should use deterministic gust models and
stream functions to determine the extreme response. The external condition
based approach is more suitable for the preliminary design stage.

14.4 Recommendation for future research

The following issues can be carried out to enhance the methodology treated in
this thesis. They are not ordered according to their relevance. However, the
verification with measurements can be placed at the top of the priorities.
The methodology should be applied to data obtained from measurements,

to verify the accuracy of the response estimate, since it was assumed from the
beginning that the simulation code can predict the turbine response accurately.
Moreover, it can also be verified if the Process and POT method require less
amount of measurement data than the MAX method to estimate the extreme
response distribution.
The conclusions show that it is only necessary to account for few sea states

for the estimate of the extreme response distribution; one can include other
critical load situations or stochastic parameters, for example the turbulence
intensity. The inclusion of other load situations would expand the scope of the
method because one of the limitations of the method is that it considers only
extreme responses of normal production states and standstill.
The constraint of the wind gust is applied to the maximum wind gust speed.

For the pitch regulated wind turbine this does not necessarily give a severe
response. One may apply the constraint to the rise time of the gust, which can
be more detrimental to the pitch regulated wind turbine, because the controller
can not react indefinitely fast to the rapid change of the wind speed.
The required number of simulations are determined empirically. This can
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be improved using theoretical analysis to determine the limit by studying the
characteristics of the process, i.e. wind turbulence and waves.
The joint statistics of wind and waves used here does not give a very different

estimate of the extreme wind and waves. Other models of joint statistics with
different correlation structures should be applied to see whether the difference
of the estimates (or the lack of it) is due to the statistical models or is inherent
to the hindcast data used here.
The non-linearity of waves may become more relevant for shallow water

locations. The improvement of non-linear random waves will contribute to a
better estimate of the extreme wave loads. The influence of breaking waves on
the extreme response is also another issue to be studied.
In this study the focus is on the response, however, for a full reliability

approach one also needs to take into account the variation of the structural
strength. This should be done in order to assess the failure probability of the
structure. Another reason why the strength should be modelled as a stochastic
variable is that in some structural reliability problems (e.g. the foundation) the
uncertainty of the strength may actually be larger than the uncertainty of the
loads.
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1
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½
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1
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Appendix B

Structural response of an
OWT in the frequency
domain

B.1 Methodology

A short description of the methodology to quantify the extreme response of an
offshore wind turbine in the frequency domain using linear models is given
For the frequency domain analysis, a stall controlled wind turbine is used

(see Chapter 4). It is assumed for this wind turbine that the extreme responses
(flap moment and OTM) occur during standstill, unlike the pitch controlled
wind turbine, for which the extreme responses occur during turbine operation.
To obtain the response spectrum of a rotating wind turbine one needs special
programs (see [46] and [84]) to deal with the rotational effects. But the method-
ology remains essentially the same.
Figure B.1 illustrates the main steps of the frequency domain calculation.

First, a quantitative description of the external conditions is required. This can
be a scatter diagram or a joint distribution of the sea state parameters (including
the mean wind speed). The short-term description of the environment can be
expressed in a spectral form, such as a wind speed spectrum or a wave elevation
spectrum. The wind load spectrum is obtained by multiplying a load transfer
function with the wind speed spectrum. The load models describe how the
external condition is transferred to external loads. For large structures, where
local load variations exist, the cross load spectrum needs to be determined, for
example the aerodynamic loads on the rotor.
The wave load calculated with the Morison equation is inherently non-linear.

To apply the frequency domain approach one needs to linearise the drag term
[11]. The spatial variation of the wave load in the horizontal direction can be
neglected for the monotower because the diameter of the pile is small compared
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to the wave length, but not for tripod or lattice type structures.
Once the load spectrum is known, the response spectrum can be obtained

by means of a response transfer function between response and loads. This
response transfer function corresponds to the impulse response function in the
time domain. The area under the response spectrum represents the variance of
the process. Hence, the standard deviation of the (Gaussian) response can be
determined.
For the flap moment, it is necessary to determine also the mean response as a

consequence of the mean wind speed. The conditional response distribution for
the given external conditions can be described with a Normal distribution with
the mean and the standard deviation obtained above. The convolution with
the probability of all possible sea states or relevant sea states yield the response
distribution of a random sea state. Extrapolating it to a yearly distribution can
be done by applying the Equation B.1.

PNa = [F (m = a)rand om ]
N (B.1)

where, the probability of non-exceedence PNa for a given value m = a and for a
period of N sea states is given.

B.2 Application

B.2.1 External conditions

The frequency domain method is applied to determine the response distribution
of a stall controlled OWT. The operating condition considered is the standstill
during extreme wind conditions, that is, wind speeds above the cut-out wind
speed. The models used in the calculation are given in the Table B.1. The
mean wind speeds considered here are all above the cut-out wind speed, hence
an extreme wind speed distribution can be applied.
The turbulence intensity is 12% for all the mean wind speeds as specified

in the GL standard for OWT. The exponential coherence model describes the
cross correlation of the wind speed spectra at different locations, which is neces-
sary to obtain the cross load spectra. The significant wave height and the mean
upcrossing period are coupled to the mean wind speed using the empirical re-
lation suggested in [69]. This is strictly speaking not correct as explained in
the description of the offshore environment conditions (see Chapter 3). There is
a significant scatter between the mean wind speed, the significant wave height
and mean upcrossing period of the waves.
As mentioned in the Chapter Wind Turbine Concepts, the water depth for

the stall regulated turbine is 20 m. For this shallow water location, the empirical
relation predicts a significant wave height that is twice as much as the 100 year
significant wave height estimated from the joint probability density distribution
(see Table 3.1). The predicted zero upcrossing period is also much larger than
the zero upcrossing period given by the scatter diagram for this location. This
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Figure B.1: General description of a frequency domain analysis for the response
calculation.
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Table B.1: Models used in the Frequency domain calculation
Models
mean wind speed distribution Gumbel
turbulence spectrum von Karman
turbulence intensity 0.12
coherence model Exponential
wave elevation spectrum JONSWAP

can lead to an overestimate of the quasi-static part of the wave loading but also
to an underestimation of the dynamic part of the wave loading.

However, the empirical relation between the mean wind speed, the significant
wave height and wave period is used in this frequency domain study for the sake
of reducing the number of required calculations. In the time domain analysis, a
three parameter scatter diagram is used.

B.2.2 Load and response

The wind and wave spectra are converted into load spectra via a load transfer
function. The load models for wind and waves are described in the previous
chapter. The loads are essentially non-linear and need to be linearised. The
linearisation of the Morison equation can be found in [11] and the linearisation
of the wind load in [79].

Modal analysis is applied to calculate the response spectra. The advantage
is that the structural continuum is discretised into orthogonal modes and every
mode can be dealt with as a simple mass-spring system. The structural response
is then the superposition of the individual responses of each mode. The blade
and tower modes are calculated using the finite element program ANSYS [2].
The first 3 blade modes in the flap direction are shown in Figure B.2 and Figure
B.3 shows the corresponding flap moments.

It has to be noticed that the modal decomposition is efficient for calculation
of dynamic response. The structural response due to wave loading has a con-
siderable quasi-static part. In the time domain calculation, this is partly taken
into account by adding higher modes as static modes in the calculation.

In this case, 5 modes are being used in the response analysis. This will
certainly underestimate the quasi-static response but this calculation is aimed
at a demonstration of the probabilistic approach rather than accurate response
calculation, for this reason one will bear this imperfection of the response cal-
culation in mind.

By integrating the product of the response transfer function and the cross
load spectra along the length of the blade, the response spectrum for a given
location is obtained
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Figure B.2: The first three modes of the blade in the flap direction. The maxi-
mum displacement is normalised to 1.

B.2.3 Response distributions

The load input is Gaussian, the response model is linear, hence the response
is also Gaussian. The mean value of the response is the static response of the
structure to the mean wind speed. The standard deviation of the response is
derived from the variance of the response, which is the area under the response
spectrum. The distribution parameters of the flap moment at the blade root
are shown in Figure B.4.
It can be seen that the mean value of the distribution increases quadratically

with the mean wind speed in accordance with the quadratic increase of the wind
load with the mean wind speed. The standard deviation of the flap moment
increases much less rapidly with the mean wind speed than the mean flap mo-
ment. The fluctuating part of the wind load is also proportional to the square
of the mean wind speed and to the turbulence intensity. Since the turbulence
intensity is rather low, 0.12, the quadratic increase with the mean wind speed is
less pronounced for the standard deviation of the wind load than for the mean
value of the wind load. This can be seen for the flap moment as well.
For the support structure the overturning moment at the sea bottom is

determined. The aerodynamic loads from the blades are transformed into a
single force on the tower top. The wind loads are superimposed with the wave
loads. The two load processes are considered to be not correlated in the short-
term. The standard deviation of the overturning moment is shown in Figure
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Figure B.3: The flap moments corresponding to the first three flap modes. The
horizontal scale is not shown because the difference in the magnitudes differ
considerably from mode to mode.
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Figure B.5: Standard deviation of the Overturning moment from different load
sources as function of the mean wind speed.

B.5.
The wave loads contribute the most to the standard deviation of the OTM,

followed by the thrust force from the blade. The aerodynamic loads contribute
to the mean value of the OTM. It has to be pointed out that the calculated
wave load using the empirical relationship between the mean wind speed and
the significant wave height from [69] is very large because of the overestimate
of the significant wave height. The significant wave height corresponding to the
maximum mean wind speed in the scatter diagram is about 1/2 of the significant
wave height predicted using the empirical relationship. Again, it shows that the
use of the empirical coupling of the mean wind speed and the significant wave
height is not appropriate. In the statistical analysis of the results obtained by
time domain simulations, a three parameter scatter diagram is used.
These conditional distributions have to be convoluted with the distribution

of the extreme mean wind speed. The result is the response distribution for
a random (extreme) mean wind speed. This distribution can be extrapolated
to a longer period T using Equation B.1. The number N of independent sea
states is the number of hours in the period of T years where the mean wind
speed is above cut-out wind speed. The distribution for different periods T is
illustrated in Figure B.6. This figure shows the distribution of the flap moment
in a stationary period of 10 minutes for different periods T , and not the largest
flap moment.
The convolution with the Gumbel distribution has influences on the long-

term distribution of the response. It can be seen that the long-term distribu-
tion has a positive skewness and the kurtosis is higher than the kurtosis of the
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Figure B.6: Distribution of the extreme blade root flap moment for different
periods T.

Gaussian distribution of the conditional distributions. Through the extrapo-
lation of the distribution, the heavier tail of the Gumbel distribution becomes
more explicit.

B.2.4 Frequency Domain or Time Domain method

The question here is whether the FD or TD method should be used. The FD
method can be easily implemented and the computational effort is considerably
less than the TD method. However, there are some issues that can not be
taken into account with the FD method. For example, it is known that the
foundation properties can influence the structural response significantly and the
characteristics of the foundation are essentially non-linear and this can not be
taken into account with the conventional FD method. In practice, it depends
on how the non-linearities affect the response characteristics and the type of
calculations. For early design stages, FD method is still an attractive option.
Furthermore, the external loads of wind and wave also require linearisation.

The formulation of the frequency method becomes more complicated for a ro-
tating structure. There are programs available that can calculate the response
of a rotating blade. Theoretically one can use the thrust force from the rotor
to calculate the contribution of the wind to the OTM, though the interaction
of the blade and support structure is not taken into account. The dynamics of
the blades deliver an important portion of aerodynamic damping to the support
structure and this has to be considered.
It can be said that the presented level of the modelling for wind turbines in

frequency domain is not sufficient for an accurate calculation of the extreme re-
sponses. If the interest lies in the determination of accurate structural responses,
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then TD method is to be preferred.
The statistics of the response treated here are the total response during

a stationary period. This means, it is not a distribution about the maxima.
Although, the probability distribution of the maximum response can be deter-
mined from the distribution parameters of the conditional distribution using
the methodology supplied in the Chapter Process Model, assuming that the
response process is Gaussian.
The main part of this thesis is dedicated to the TD methods which constitute

the principal focus of the research. Nevertheless, for fast estimate of the extreme
response one can still use the FD method, provided that accurate models are
available.
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Appendix C

Main data of the two
reference offshore wind
turbines

The main data of the pitch regulated is shown in Table C.1 and for the stall
regulated turbine they are listed in Table C.2. Table C.3 contains the parameters
of the time domain simulations. These parameters are used if they are not
explicitly specified in the text.

Table C.1: Main data of the pitch regulated offshore wind turbine
Pitch regulated offshore wind turbine WTS-80
Rotor diameter 80 m
Rated power 3 MW
Number of blades 2
Hub height 78 m
Operating range 5-25 m/s
Rated wind speed 13.7 m/s
Power control full span pitch
Support structure piled monotower
Water depth 20 m
Maximum diameter of the pile 3.5 m
First natural frequency of the support structure 0.278 Hz
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Table C.2: Main data of the stall regulated offshore wind turbine
Stall regulated offshore wind turbine
Rotor diameter 54 m
Rated power 1 MW
Number of blades 3
Hub height 48 m
Operating range 3.5-25 m/s
Rated wind speed 16 m/s
Power control fixed blade pitch
Support structure piled monotower
Water depth 20 m
Maximum diameter of the pile 3 m
First natural frequency of the support structure 0.54 Hz

Table C.3: Main parameters of the time domain simulations
parameter of the time domain simulations
Turbulence intensity 12%
Wind spectrum von Karman
Wind shear power law exponent 0.11
Coherence function IEC standard[53]
Wave spectrum Pierson-Moskowitz
Sea currents 0 m/s



Samenvatting (Dutch)

Windenergie buitengaats maakt momenteel een snelle ontwikkeling door. Het
wordt gezien als een belangrijke aanvulling voor windenergie op land. Grootschalige
windparken buitengaats zullen een aanzienlijke aandeel vormen van de totale
duurzame energie opwekking.
Het ontwerp van windturbines op zee geeft ook nieuwe uitdagingen vanwege

de omgevingscondities in de Noordzee. De hydrodynamische belastingen leiden
tot extra belasting op de constructie en de gecombineerde extreme wind en golf
belastingen kunnen een belangrijke onderdeel van het ontwerp van de wind-
turbine uitmaken. Extreme omgevingscondities hoeven niet automatisch tot
extreme responsies van de windturbine te leiden, daarom wordt in deze studie
de responsie van de windturbine buitengaats beschouwd.
De omgevingscondities van de betreffende locatie van de windturbine kan

beschreven worden met een gezamenlijke verdeling van de windsnelheid, signifi-
cante golfhoogte en de golfperiode. Uit deze verdeling kan men een contour van,
bijvoorbeeld, 100 jaar bepalen. Uit deze contourlijn volgt de extreme condities
van wind en golven.
De extreme responsie van een windturbine buitengaats kan berekend worden

in frequentie of tijddomein. De tijddomein methode wordt hier toegepast om-
dat de windturbine een niet-lineair responsie gedrag heeft. De resultaten van de
simulaties worden op verschillende manieren geanalyseerd. De MAX methode
gebruikt de maximale waarde van elke simulatie. De POT methode gebruikt de
locale maxima boven een gedefinieerde drempel, en de Proces methode maakt
gebruik van de statistische momenten van de tijdreeks van de responsie. Met
deze drie methoden kan de verdeling van de extreme responsie van de windtur-
bine bepaald worden.
Omdat het aantal benodigde simulaties exponentieel stijgt met het aantal

stochastische variabelen moet dat aantal beperkt blijven. Op basis van een
gevoeligheidsanalyse zijn de volgende drie variabelen gekozen: de gemiddelde
windsnelheid, de significante golfhoogte en de (positieve) nuldoorgangperiode.
Het vereiste aantal simulaties en de lengte van de simulaties zijn bestudeerd.
Voor de MAX methode worden 50 simulaties van 40 minuten elk aanbevolen. De
resultaten met de MAX methode worden gebruikt als vergelijkingswaarde voor
de POT en Proces schattingen. Om een schatting van de responsie verdeling te
krijgen, die vergelijkbaar is met de schatting van de MAX methode, zijn voor
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de POT en Proces methoden minder aantal simulaties nodig.
De onzekerheden omtrent de verdelingsfuncties en de verdelingsparameters

worden in rekening gebracht met een Bayesiaanse analyse. De invloed van de
onzekerheden van de verdelingsparameters is in dit geval niet significant. De
variatie van de schatting die veroorzaakt wordt door de verschillende verdel-
ingsfuncties is aanzienlijk groter. De Bayesiaanse analyse levert een formeel
criterium voor het kiezen van een verdelingsfunctie.
In theorie dragen alle voorwaardelijke verdelingen bij aan de lange termijn

verdeling. Echter, het is niet noodzakelijk om alle verdelingen mee te nemen
omdat de staart van de lange termijn verdeling in dit geval wordt bepaald door
een paar verdelingen. Daarom het is toereikend alleen die zeetoestanden mee te
nemen, die de extreme responsies van een windturbine veroorzaken.
De drie methoden die hier zijn behandeld berekenen de verdeling van de

responsie waaruit de responsie met een bepaalde terugkeertijd, bijvoorbeeld 100
jaar, volgt. In de praktijk worden vaak de 100 jaar externe conditie bepaald
en wordt aangenomen dat de bijbehorende responsie ook een terugkeertijd van
100 jaar heeft. De twee benaderingen gebaseerd op de responsie en de externe
conditie zijn toepast op twee voorbeeld windturbines, een met overtrekregeling
en een andere met bladhoekregeling.
Een van de extreme condities die beschouwd is, is een windvlaag met een

extreme golf. De huidige ontwerpcodes beschrijven de extreme windvlaag en ex-
treme golven met deterministische modellen. Met de zogenoemde ’Constrained’
simulatie kan men ook stochastische modellen van extreme windvlagen en gol-
ven construeren. Voor de windturbine met bladhoekregeling is de windvlaag uit
’constrained’ simulatie niet maatgevend omdat de regelaar de windvlaag weg kan
regelen. Voor de windturbine met overtrekregeling leiden de deterministische
en stochastische windvlagen tot soortgelijke extreme responsies.
Een ander punt van discussie is het gelijktijdig optreden van een extreme

windvlaag en extreme golf. In werkelijkheid treedt een extreme windvlaag en
een extreme golf niet tegelijkertijd op en daarom wordt een bepaald tijdverschil
aangenomen tussen de maxima van wind en golven. Voor de deterministische
modellen neemt de extreme responsie heel snel af met het tijdverschil, terwijl de
afname van de maximale responsie voor de ’constrained’ modellen meer gelei-
delijk is. Dit tijdverschil tussen de maxima heeft een duidelijke invloed op de
extreme responsie van de ondersteuningsconstructie maar niet voor de blad re-
sponsie.
De methode gebaseerd op de externe conditie geeft een heel andere schat-

ting dan de methoden die gebaseerd zijn op de responsie, omdat de extreme
responsie niet altijd correspondeert met de extreme externe condities. Voor de
overtrekturbine, is er een duidelijk verband tussen de extreme responsie en de
extreme externe condities maar niet voor de bladhoekgeregelde turbine.
De extreme responsie die hier zijn behandeld treden op onder normale oper-

ationele condities. Er zijn andere situaties die resulteren in extreme responsies,
bijvoorbeeld het falen van de bladhoekregeling, scheve aanstroming enz. Op
deze bijzondere situaties wordt in deze studie niet ingegaan. De conclusies zijn
in principe geldig voor de gekozen turbine configuraties en de gekozen locatie,
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maar de methodologie is algemeen toepasbaar op andere turbine typen, andere
locaties en andere extreme situaties kunnen meegenomen worden.
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