

Colin Morgan

Garrad Hassan & Pariners Lid www.garradhassan.com

Contract No. NEE5/1999/562

Funded by the European Commission

CA-OWEE Project

17 European Partners from 13 Countries:

Principal partners:

- Delft University of Technology, NL (co-ordinator)
- Garrad Hassan & Partners, United Kingdom *
- Kvaerner Oil & Gas, United Kingdom *
- Energi & Miljoe Undersoegelser (EMU), Denmark
- Risø National Laboratory, Denmark
- Tractebel Energy Engineering, Belgium

17 European Partners from 13 Countries: Other Contributors:

- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Spain
- Centre for Renewable Energy Sources (CRES), Greece
- Deutsches Windenergie-Institut (DEWI), Germany
- Germanischer Lloyd Windenergie, Germany *
- Netherlands Energy Research Foundation (ECN), The Netherlands
- Espace Eolien Developpement (EED), France
- Ente per le Nuove Tecnologie, l'Energia e l'Ambiente (ENEA), Italy *
- University College Cork, Ireland
- Vindkompaniet i Hemse AB, Sweden *
- Technical Research Centre of Finland (VTT), Finland *
- Baltic Energy Conservation Agency (BAPE), Poland

Objective:

"to define the maturity of the technology currently available for offshore wind farms"

Scope:

- Offshore-wind-turbine-size-and-configuration
- Support-structures
- Operation and maintenance, reliability
- Electrical transmission and grid connection

Wind turbine size and configuration

Scaling trends
 Control
 Rotor blades
 Scalwass

Growth of the technology

Power rating trend - up to 62m rotor diameter

..... with larger machines

Design blade tip speed

Increasing tip speed

Design	Power	Control	Tip speed	Ratio
	[kW]	concept	[m/s]	(offshore/land)
Vestas V66 (land)	1650	Pitch reg.,	66	1.21
		variable slip		
Vestas V80 (offshore)	2000	Pitch reg.,	80	
		variable speed		
Nordex N60	1300	Stall reg.,	60	1.33
		fixed speed		
Nordex N80 (offshore)	2000	Pitch reg.,	80	
		variable speed		
Bonus 1300 (land)	1300	Active stall,	62	1.10
		fixed speed		
Bonus 2000 (offshore)	2000	Active stall,	68	
		fixed speed		
NEG Micon 1000/60 (land)	1000	Stall reg.,	57	1.19
		fixed speed		
NEG Micon 2000/72 (offshore)	2000	Active stall,	68	
		fixed speed		

Control system trends

Pitch control

Only around half of models historically Predominant in tubines over 70m diameter

🔸 \ચાંચ્રોક સ્ટ્રસ્ટ્રે

Less than 10% of models historically are fixed speed Dual-speed; high slip; moderate range variable speed; direct drive systems Some form of variable speed predominant in large machines

Blade technology

Gearboxes

- Reter speed approx. 201pm; generator speed approx. 45001pm
- Historically, 3stage 1 planetary, 2 parallel
- Langer machines likely to require 4th stage (>3MV onshore, langer offshore due to higher rotor speed)

Marked increase in complexity, or, Increased generator speed, or, Direct drive approach

Future trends

- Highertip speeds
 Lowertorque, tess mass and cost of towertop
 Increased carbon fibre usage
 Higher specific strength in solidity is to be maintained
 - Direct drive
 - Less mechanical complexity
 - Increasingly integrated design Support structure
 Grid connection (e.g. HVDC generator)
 Design for Installiation & maintenance

Support structures

Monoplie expected to be most common option for future offshore wind projects (but probably least stiff)

Monopile design

Weln-established codes and practices (dirand gab) Structures Wpically supported by 3 or 4 legs Single plie through each leg "Skit" plies around each leg But, unlike an offshore platform, Turbines exelt much higher live loads (shear and bending) Cyclic loading of near-surface solis more important Potential for loss of soil contact near surface (post-holing) Much higher volume jobs (I.e. not one-offs) Nearshore works practice (jetties, etc.) important reference

Monopile installation

Four options: Akove-surace hammering Unitervater hammering Drindrive Drindrive Drinrand grout Trate-off: Installiation upsed Keyured plie capacity Geotechnical knowledge Kisk of Gamage to plie Keyured placement accuracy

www.offshorewindenergy.org

Acknowledgement: EC funding & 17 partners

